Измеритель запыленности воздуха

Изобретение относится к средствам измерения концентрации частиц пыли в воздухе и может быть использовано для контроля атмосферы жилых и производственных помещений. Изобретение основано на использовании капельного кластера, для зарождения которого создается слой жидкости в кювете (типа чашки Петри) из светопрозрачного материала, на дне которой сформирован окрашенный участок, поглощающий порядка 90…95% мощности излучения применяемого светового источника. Капельный кластер генерируется тепловым действием светового пучка, падающего извне кюветы перпендикулярно плоскости ее дна. Проникающие сквозь дно кюветы 5…10% светового излучения используются для измерения скорости роста капельного кластера, по которой определяется степень запыленности воздуха. Техническим результатом является упрощение эксплуатации устройства за счет возможности использования сменных кювет. 2 ил.

 

Изобретение относится к области средств измерения концентрации частиц пыли в воздухе и может быть использовано для контроля запыленности воздуха жилых и производственных помещений, а также для экологического мониторинга состояния атмосферы.

Для измерения концентрации аэрозольных частиц предлагается использовать явление «Капельный кластер» [1], наблюдаемое при локальном нагреве и испарении жидкостей (например, воды). Пары жидкости, попадая в относительно холодную газовую среду, конденсируется в микрокапли, зарождающиеся на центрах конденсации, основными из которых являются суспензированные в воздухе твердые микрочастицы - пылинки. При температуре жидкости, превышающей пороговое значение, выпавшие на жидкую поверхность микрокапли конденсата проявляют высокую устойчивость к коалесценции и формируют диссипативную суперструктуру - «Капельный кластер».

Принцип работы устройства основан на измерении скорости роста площади капельного кластера, которая, при прочих равных условиях, прямо пропорциональна концентрации пыли в воздухе.

Схема устройства показана на фиг.1. Здесь: 1 - источник света (например, полупроводниковый лазер), 2 - коллимированный световой пучок, 3 - основание для установки сменной кюветы 4 из светопрозрачного материала (например, стандартная чашка Петри для биологических исследований, фиг.2). Изнутри кюветы сформирован участок поверхности дна 5 с высоким коэффициентом поглощения света на длине волны светового пучка, 6 - слой жидкости, 7 - капельный кластер, 8 - фотоприемник; 9 - трубка для подачи воздуха, контролируемого на содержание пыли.

Оптическая плотность окрашенного участка дна кюветы подбирается таким образом, чтобы в нем поглощалось порядка 90…95% световой энергии пучка, благодаря чему в жидкости индуцируется локализованный тепловой источник, необходимый для генерации капельного кластера. Остальные 5…10% светового потока используются для детектирования капельного кластера [1].

Началом реализованного в устройстве измерительного цикла является момент включения источника света, тепловое действие которого создает условия, необходимые для образования капельного кластера. Увеличиваясь в размере, капельный кластер уменьшает световой поток, регистрируемый фотоприемником, фиг.1. Концентрация пыли в воздухе определяется по скорости изменения интенсивности излучения. В момент снижения светового потока до некоторого порогового уровня источник света выключается на время, необходимое для восстановления системы в исходное состояние, после чего измерительный цикл может быть продолжен.

Предлагаемое устройство позволяет применять сменные (при необходимости одноразовые) кюветы, замена которых не сказывается на настройках оптических и электронных систем прибора. Кроме того, легко извлекаемые из устройства прозрачные кюветы обеспечивают оптимальные условия для детального изучения фракционного состава пыли любыми доступными методами микроскопии. В качестве примера на фиг.2 приводится полученное с помощью микроскопа МБС-10 изображение участка дна кюветы с адсорбированными в процессе измерения пылевыми частицами: верхний снимок в проходящем, нижний - в отраженном свете.

ЛИТЕРАТУРА

1. Капельный кластер. А.А.Федорец. Письма в "ЖЭТФ", т.79, №8, с.457-459, 2004.

Устройство, измеряющее уровень запыленности воздуха по скорости изменения интенсивности прошедшего через капельный кластер излучения, содержащее источник света, формирующий коллимированный световой пучок, основание для установки сменной кюветы из светопрозрачного материала, внутри которой сформирован участок поверхности дна с высоким коэффициентом поглощения на длине волны светового пучка, направляемого перпендикулярно плоскости дна кюветы, слой жидкости, в которой индуцируется локализованный тепловой источник для генерации капельного кластера, трубку для подачи воздуха и фотоприемник.



 

Похожие патенты:

Изобретение относится к области физики, а именно к способам и устройствам для измерения двух или более переменных величин, и предназначено для оценки маскирующих характеристик аэрозолей с учетом размеров, окраски маскируемых объектов, фонов, на которых они располагаются, а также условий их наблюдения.

Изобретение относится к способу оценки сигнала рассеянного света, который вырабатывается приемником рассеянного света при обнаружении, в частности, мелких частиц в несущей среде, причем сигнал рассеянного света поочередно или в любой последовательности проходит этап калибровки, этап компенсации ухода частоты, этап температурной компенсации, этап установки чувствительности или этап алгоритма фильтрации.

Изобретение относится к области средств измерения концентрации частиц пыли в воздухе и может быть использовано для контроля запыленности воздуха жилых и производственных помещений, а также для экологического мониторинга состояния атмосферы.

Изобретение относится к области исследования или анализа материалов с помощью оптических средств в потоке текучей среды, а более конкретно к конструкции оптических устройств, предназначенных для количественных оценок распыливания жидкостей форсунками.

Изобретение относится к области оптических методов исследования. .

Изобретение относится к технической физике и может быть использовано при измерениях концентрации твердых частиц в дымовых газах газоходов тепловых электростанций.

Изобретение относится к области контроля вещества оптическими методами и может быть использовано для определения дымности и запыленности газов, например дымности отработавших газов автомобилей с дизельными двигателями, с целью повышения точности измерений, поскольку позволяет измерять оптическую1 плотность газов при произв6льнЧ)|5Г ее Че Нй 1 г потока.

Изобретение относится к области измерительной и испытательной техники и предназначено для сертификации порошковых систем пожаротушения на борту транспортного средства

Изобретение относится к датчику мутности для использования, например, в стиральной машине (400) или посудомоечной машине, к способу измерения мутности жидкости с помощью указанного датчика, к машине для мойки предметов, которая содержит указанный датчик, и к компьютерному носителю данных

Изобретение относится к контрольно-измерительной технике, а именно к оптико-электронным способам контроля и регулирования параметров дисперсных сред. По зарегистрированному импульсному световому изображению рассеченной плоской с малой толщиной части факела распыла определяют параметры распыла капель в данной части факела с помощью системы единиц дисперсности на основе формулы объема шара (сферы) капли, для чего в указанном изображении производят сортировку и подсчет количества капель стандартных классов диапазонов микроскопических размеров в их смежной последовательности. Для реализации способа разработана двухлазерная установка с цифровыми устройствами обработки сигналов изображений и ЭВМ. Изобретение позволяет расширить функциональные возможности способа и установки за счет измерения скоростей диспергированных капель и получения результатов оценки параметров факела распыла посредством анализа величин приведенных интегральных объемов капель на единицу площади с сортировкой по последовательности смежных диапазонов размеров капель. 2 н. и 2 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к способу обнаружения биологического материала в воздушном потоке, в способе воздушный поток (16) подают с помощью устройств для образцов (12), световой пучок (17) испускают в направлении воздушного потока (16), создают сигнал флуоресценции (24), описывающий флуоресценцию частицы (14), и создают сигнал рассеивания (32), описывающий рассеивание света частицей (14). Сигнал флуоресценции (24) и сигнал рассеивания (32) превращают в дискретные значения и определяют значение сигнала тревоги. Дискретные значения регистрируют кумулятивно в виде точек попадания по меньшей мере в двухмерном пространстве 1 измерения, имеющем выбранные измерения. По меньшей мере одну область индексов (56, 58, 60) предварительно выбирают из указанного пространства измерений, вычисляют кумулятивный индекс при индексной частоте по точкам попадания, накапливаемым в каждой предварительно выбранной области индексов (56, 58, 60), значение сигнала тревоги, отражающее присутствие выбранного биологического материала, определяют по указанным индексам посредством использования предварительно выбранного критерия. Изобретение позволяет упростить устройство для обнаружения биологического материала. 2 н. и 12 з.п. ф-лы, 5 ил.

Предложен способ определения атмосферного потенциала обледенения. Способ содержит испускание (304) допплеровским гетеродинным лидаром (прибором светового обнаружения и определения дальности) (108а, 108b) электромагнитного излучения в атмосферу и прием излучения, обратнорассеянного от аэрозоля, в частности, от облака. Определяют (306) указание интенсивности сигнала, в частности ОСШ-отношения (отношение сигнал-шум на несущей частоте), на основе принятого обратнорассеянного сигнала для одного или более расстояний, в частности высот над заданным базовым уровнем, в частности над местоположением лидара. Сравнивают (308) указания интенсивности сигнала с по меньшей мере одним заданным базовым значением для того, чтобы получить величину вероятности присутствия облака (110) на указанном одном или более расстояниях. Определяют (310) величину потенциала обледенения на указанных нескольких расстояниях на основе указанного сравнения и величины температуры на указанном одном или более расстояниях. Представлена также система для выполнения указанного способа. Технический результат - повышение точности определения условий атмосферного обледенения. 5 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к контрольно-измерительной технике, в частности к оптико-электронным устройствам измерения параметров дисперсных сред. Заявленное устройство содержит лазерный источник зондирующего излучения, фотоэлектрический приемник излучения и оптический сканер в виде вращающегося уголкового отражателя и двухлинзовой оптической системы. Исследуемая форсунка, расположенная между линзами оптической системы, закреплена на подвижной каретке с возможностью ее перемещения вдоль оси симметрии факела распыла. Приемник излучения размещен в светонепроницаемом цилиндрическом корпусе с точечной диаграммой на его торце, расположенной на расстоянии от оси симметрии форсунки. В корпусе размещена дополнительная линза на расстоянии от диаграммы, а перед приемником излучения установлен матовый рассеиватель. Скорость перемещения каретки соответствует неравенству ,а расстояние между выходным сечением форсунки и осью оптической системы в процессе перемещения форсунки изменяется в пределахz=0÷h,где - фокусное расстояние линз оптической системы, мм;l - расстояние между линзами оптической системы, мм; - фокусное расстояние дополнительной линзы, мм;u - скорость перемещения каретки, мм/с;d - диаметр лазерного луча, мм;n - угловая скорость вращения отражателя, об/с;R - радиус поперечного сечения факела распыла, мм;z - расстояние между выходным сечением форсунки и осью оптической системы, мм;h - длина факела распыла форсунки, мм. Технический результат – повышение информативности и снижение погрешности измерений характеристик факела распыла форсунки. 6 ил.
Наверх