Способ и устройство для получения одного или нескольких газов

Авторы патента:

C25B9 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной
C25B1/04 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной
C25B1 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2385363:

РОЙНЕР Мария (DE)
ГЕНШ Барбара (DE)
РОЙНЕР Франц (DE)
ГЕНШ Хеннинг (DE)

Изобретение относится к способу получения водорода или кислорода, согласно которому воду обрабатывают электролитическим путем, при этом в воде имеется ионообменное вещество, содержащее матрицу, анкерные группы и обмениваемые ионы. Устройство для осуществления способа содержит резервуар с водой, в котором имеется ионообменное вещество, положительный электрод и отрицательный электрод, выполненные с возможностью присоединения или присоединенные к источнику тока. Изобретение направлено на усовершенствование способов получения водорода и кислорода. 2 н. и 2 з.п. ф-лы, 1 ил., 3 табл.

 

Изобретение относится к способу получения одного или нескольких газов.

При осуществлении способа жидкость, из которой получают газ, обрабатывают электролитическим путем. В результате электролиза образуются один или несколько газов. В частности, способ служит для получения водорода или водорода и кислорода, последний, в частности в виде смеси (гремучего газа).

Способы получения водорода или водорода и кислорода или гремучего газа уже известны. При обычном электролитическом способе для этого используют воду. Молекулы воды содержат водород и кислород. Правда, кпд и скорость реакции в известном способе требуют повышения.

Из US-A 5879522 известно устройство для электролитического получения водорода и кислорода, содержащее анодную и катодную камеры, в которых имеются электропроводящие ультрамикроэлектродные частицы, находящиеся в контакте с катодом и анодом и служащие для улучшения проводимости и для минимизации перенапряжений.

Из JP 2002-322584 А известен способ электролиза воды, при котором реакцию поддерживают посредством мелкого ювелирного порошка или каменного порошка или мелкого порошка различных видов минералов или металлов. Мелкие порошки должны улучшать проводимость.

В DE 10016591 С2 раскрыт способ получения водорода, при котором первый электролит располагают во внутреннем пространстве полого микроволокна, а второй электролит - вне полого микроволокна. Полое микроволокно несет на поверхностях своих стенок отдельно анод и катод.

В US 2001/0050234 А1 раскрыта электролитическая ячейка с первым и вторым электродами, между которыми расположена электролитическая мембрана. Для электролитической мембраны можно применять электронообменную смолу.

Задачей изобретения является создание усовершенствованного способа описанного выше рода.

Согласно изобретению эта задача решается посредством признаков пункта 1 формулы изобретения. В жидкости имеется вещество, в которое проникает получаемый или один из получаемых посредством электролиза газов. Преимущественно этот газ проникает в это вещество в ионной связи.

Предпочтительные усовершенствования изобретения описаны в зависимых пунктах.

Предпочтительно, если в имеющееся в жидкости вещество проникает водород, преимущественно в ионной связи.

Преимущественно получаемым газом является водород.

Получаемыми газам могут быть водород и кислород. При этом можно получать водород и кислород отдельно. Возможно также получение водорода и кислорода в смеси (гремучий газ). Особенно предпочтительно естественное получение гремучего газа. Способом согласно изобретению гремучий газ может быть получен в правильном (стехиометрическом) соотношении смешивания. Он может применяться в таком виде, в частности для вырабатывания энергии.

Жидкостью, из которой получают газ, является преимущественно вода.

Другое предпочтительное усовершенствование отличается тем, что веществом, в которое проникает получаемый газ, является ионообменное вещество. В частности, этим веществом является ионообменная смола.

Преимущественно ионообменное вещество представляет собой кислое ионообменное вещество, в частности сильно-кислое ионообменное вещество.

Вещество, или ионообменное вещество, в которое проникает получаемый газ, может быть гелеобразным.

Предпочтительно, если ионообменное вещество содержит матрицу, анкерные группы и обмениваемые ионы или состоит из них. Матрица может представлять собой, в частности, сшитый полимер, в частности сшитый полистирол. Анкерными группами являются преимущественно сульфогруппы (SO3). Обмениваемыми ионами являются преимущественно ионы водорода (Н). В частности, ионообменное вещество может иметь общую химическую формулу R-SO3-Н.

Другое предпочтительное усовершенствование отличается тем, что вещество, в которое проникает получаемый газ, или ионообменное вещество, в частности основной материал ионообменного вещества, содержит вещества каталитического действия. Вещества каталитического действия могут представлять собой, в частности, токопроводящие вещества, в частности токопроводящие пленки. Вещества каталитического действия могут быть примешаны к веществу или ионообменному веществу или основному материалу ионообменного вещества.

Согласно другому предпочтительному усовершенствованию вещество, в которое проникает получаемый газ, или ионообменное вещество, или основной материал ионообменного вещества содержит энзимы каталитического действия и/или газовыделяющие энзимы. В качестве подобных энзимов применяют преимущественно органические кислоты, в частности винную кислоту. Энзимы могут быть добавлены к веществу или ионообменному веществу или ионообменной смоле или основному материалу ионообменного вещества.

Устройство для осуществления способа согласно изобретению содержит резервуар с жидкостью и положительный и отрицательный электроды, выполненные с возможностью присоединения или присоединенные к источнику тока. В жидкости имеется вещество, в которое проникает получаемый или один из получаемых при электролизе газов.

Преимущественно электрод выполнен трубчатым.

В жидкости, из которой получают газ или вещество, в которое проникает получаемый газ, в частности внутри трубчатого электрода, может находиться материал-заполнитель. Этот материал представляет собой преимущественно вату.

В материале-заполнителе имеется преимущественно кислота. Этот материал преимущественно смочен кислотой. Кислота представляет собой преимущественно соляную кислоту.

В отличие от US 2001/0050234 А1, согласно изобретению не требуется протонопроводящая мембрана. Согласно изобретению можно не включать в мембрану вещество, в которое проникает получаемый или один из получаемых газов, в частности ионообменное вещество. Можно расположить это вещество или ионообменное вещество с возможностью его связи как с анодом, так и с катодом и жидкостью. Далее можно использовать электронепроводящее вещество, в которое проникает получаемый или один из получаемых газов, в частности электронепроводящее ионообменное вещество. Благодаря изобретению обеспечено применение вещества, в которое проникает получаемый или один из получаемых газов, в частности ионообменное вещество, в котором проникающие в него за счет ионной связи и/или за счет ван-дер-ваальсовых сил краевые группы при электролизе высвобождаются.

Пример осуществления изобретения подробно поясняется ниже с помощью прилагаемого чертежа, на котором схематично изображено устройство для получения гремучего газа.

Устройство содержит резервуар 1, выполненный вращательно-симметричным вокруг средней оси 2 и состоящий из трубчатого корпуса 3, который закрыт верхней 4 и нижней 5 крышками. Все устройство выполнено преимущественно длиннее, нежели показано.

На внутренней стенке корпуса 3 расположен кольцеобразный внешний электрод 6. Внутри корпуса 3 находится кольцеобразный внутренний электрод 7. Корпус 3 заполнен до уровня 8 водой 9.

Между электродами 6, 7 до высоты 11 имеется гелеобразное ионообменное вещество 10.

Внешний электрод 6 соединен выключателем 12 с плюсом источника 13 тока, например 12-вольтовым автомобильным аккумулятором. Минус источника 13 тока соединен с внутренним электродом 7. Полярность может быть также обратной.

В проиллюстрированном примере выполнения уровень 8 воды лежит выше высоты 11 гелеобразного ионообменного вещества 10 и выше открытой вверху трубки внутреннего электрода 7. Электрод 7 может быть выполнен также закрытым. Другая возможность состоит в том, что электрод 7 выступает из уровня 8 воды. Далее в указанном примере выполнения высота 11 гелеобразного ионообменного вещества 10 лежит чуть ниже верхнего конца внешнего электрода 6. Устройство может быть выполнено также таким образом, чтобы эта высота 11 лежала выше верхнего конца электрода 6. Внутренний электрод 7 может быть внизу закрыт или открыт. Он может быть далее открыт на своем нижнем конце или герметично соединен с нижней крышкой 5.

При замыкании выключателя 12 в резервуаре 1 происходит электролитическая реакция, при которой положительным внешним электродом 6 притягиваются отрицательно заряженные электроны и ионы. Положительные ионы перемещаются к отрицательному внутреннему электроду 7. Таким образом, в пространстве 14 между уровнем 8 воды и верхней крышкой 4 образуется гремучий газ, причем речь идет о естественном получении гремучего газа. Эта реакция значительно ускоряется за счет ионообменного вещества 10. Гремучий газ находится в стехиометрическом соотношении. Он может быть удален из пространства 14 (не показано). Это может происходить периодически (периодический режим) или непрерывно. Далее возможно за счет соответствующего выполнения резервуара 1 отдельные улавливание и удаление образующихся водорода и кислорода.

Ионообменное вещество 10 представляет собой сильно-кислое гелеобразное ионообменное вещество с сульфогруппами в качестве анкерных групп. Ионообменное вещество имеет общую химическую формулу R-SO3-Н, где R обозначает матрицу, в частности сшитую полистирольную матрицу, SO3 - анкерную сульфогруппу, а Н - водород.

Преимущественно ионообменное вещество 10 поддерживают в движении. Это происходит преимущественно таким образом, что ионообменное вещество 10 не опускается. Ионообменное вещество может поддерживаться в движений методом псевдоожижения. Когда ионообменное вещество поддерживается в движении, улучшаются газообразование и поток электронов.

Согласно другому предпочтительному усовершенствованию ионообменное вещество поддерживают в жидкости во взвешенном состоянии. Это происходит преимущественно за счет того, что ионообменное вещество или основной материал ионообменного вещества изготовлен так, что он сам по себе остается во взвешенном состоянии в жидкости, т.е. в воде 9.

Способ может осуществляться непрерывно. Для этого ионообменное вещество 10 может непрерывно подаваться и отводиться (не показано). Отведенное ионообменное вещество может регенерироваться и заново подаваться.

Способ может осуществляться также многоступенчато.

Образующийся газ может отсасываться из пространства 14. Для этой цели можно создать в этом пространстве 14 вакуум. Этим можно далее достичь того, что уходящий вверх газ захватит ионообменное вещество 10 и таким образом вызовет перемешивание и распределение ионообменного вещества 10.

Давление и температура могут быть заданы так, чтобы способ осуществлялся с оптимальным кпд.

Во время практических опытов были получены следующие данные измерений.

Пример 1

Опыт № Сила тока (А) Напряжение (В) Мощность (Вт) Полученное количество газа (мл/мин) Энергия в единицу времени (Вт) кпд
1 1,0 10.2 10,2 10 1,8 0,176
2 3,0 9,2 27,6 40 7,2 0,260
3 7,5 6,5 48,75 100 18,0 0,370
4 8,1 5,7 46,17 115 20,7 0,448

Опыт №1 является сравнимым опытом, проведенным без ионообменного вещества в воде. При проведении опыта №2 использовали небольшое количество ионообменного вещества. Опыт №3 проводили с большим количеством ионообменника. При проведении опыта №4 дополнительно добавляли небольшое количество соляной кислоты.

При проведении опыта №1 подводили ток 1,0 А при напряжении 10,2 В, так что подведенная электрическая мощность составляла 10,2 Вт. При этом получали гремучий газ, что соответствует энергоемкости в единицу времени 1,8 Вт. Отсюда возникает кпд (1,8:10,2)=0,176.

За счет добавления ионообменного вещества сила тока возрастает в зависимости от добавленного количества с 3,0 до 7,5 А, тогда как напряжение соответственно падает с 9,2 до 6,5 В. Количество полученного гремучего газа возрастает с 40 мл/мин до 100 мл/мин, кпд возрастает с 0,260 до 0,370.

За счет добавления небольшого количества соляной кислоты при проведении опыта №4 сила тока возрастает дальше до 8,1 А, а напряжение падает дальше до 5,7 В. Количество полученного гремучего газа возрастает далее до 115 мл/мин, в результате чего кпд возрастает до 0,448.

Пример 2

Использовали изображенное на чертеже опытное устройство, причем, однако, была изменена полярность. Образующий минусовой электрод корпус 3 был выполнен в виде трубки длиной 116 мм с внутренним диаметром 26 мм и с внешним диаметром 28 мм. Образующий плюсовой электрод внутренний электрод 7 был выполнен в виде трубки длиной 116 мм с внутренним диаметром 14 мм и с внешним диаметром 16 мм. В качестве источника 13 тока использовали зарядное устройство для аккумулятора, которое выдавало постоянный ток напряжением 12 В. В качестве ионообменного вещества применялся сополимер стирола с дивинилбензолом фирмы «Амберлит», имеющий форму темных, цвета янтаря, шариков. Функциональная группа этого ионообменного вещества образована сульфокислотой. Внутреннее пространство внутреннего электрода 7 заполняли ватой (без дополнительной добавки).

Для проведения опытов электродное устройство заполняли 50 мл питьевой воды, что соответствует количеству вещества 2,75 моль. Все устройство ставили полностью «под воду», так что мог происходить обмен жидкостью между внутренним пространством внутреннего электрода 7 и кольцевым пространством между внутренним электродом 7 и корпусом 3, а именно как через верхний конец внутреннего электрода 7, так и через его нижний конец, т.е. промежуток между нижним концом внутреннего электрода 7 и нижней крышкой 5. Питьевая вода имела рН-значение 7,0, электрическую проводимость 266 мкСм/см и жесткость 5,4 dH°. При приложении постоянного напряжения в зависимости от добавленного количества ионообменного вещества возникали следующие значения силы тока, напряжения, мощности и образовавшейся в единицу времени массы гремучего газа, указанной в качестве стандартного объема, причем применялось уже описанное ионообменное вещество.

Опыт № Сила тока (А) Напряжение (В) Мощность (Вт) Полученное количество газа (мл/мин) Ионообменное вещество (мл)
1 0,70 11,00 7,70 5,0 0
2 0,80 9,90 7,92 10,0 1
3 1,55 9,50 14,72 20,0 2
4 1,67 9,35 15,61 22,0 3
5 1,92 9,20 17,66 24,0 4
6 2,09 9,10 19,02 26,0 5
7 2,27 9,00 20,43 28,0 6
8 2,75 8,80 24,20 30,0 7
9 3,50 8,30 29,05 40,0 10
10 3,85 8,00 30,80 50,0 15
11 4,40 7,80 34,32 60,0 20
12 4,60 7,60 34,96 70,0 25

При проведении опыта ионообменное вещество не добавляли. Получали 5,0 мл/мин гремучего газа. Это количество удваивается за счет добавления 1 мл ионообменного вещества. Полученное в минуту количество гремучего газа возрастает с увеличением количества ионообменного вещества.

Пример 3

Использовали то же опытное устройство, что и в примере 2, причем, однако, длина корпуса 3 и внутреннего электрода 7 была увеличена с 116 до 270 мм. В остальном опытное устройство не было изменено. При этом были получены следующие данные измерений.

Опыт № Сила тока (А) Напряжение (В) Мощность (Вт) Полученное количество газа (мл/мин) Ионообменное вещество (мл)
1 1,5 10,50 15,75 12 0
2 2,0 10,00 20,00 30 1
3 3,0 9,20 27,60 40 2
4 6,05 7,00 42,35 55 3
5 6,55 6,60 43,23 70 4
6 6,85 6,40 43,84 80 5
7 6,90 6,30 43,47 85 6
8 7,15 6,20 44,33 95 7
9 7,45 6,00 44,70 100 10
10 7,70 5,85 45,04 110 20
11 8,00 5,75 46,00 115 30
12 8,10 5,40 43,74 120 40

Способ согласно изобретению может осуществляться таким образом, что вещество, в которое проникает получаемый газ, в частности, в ионной связи, например кислый катионообменник, добавляют в качестве катализатора или донора при электролизе к жидкости, в частности воде, так что разложение разлагаемого вещества, например воды, ускоряется многократно, причем добавленное вещество не является кислотой, щелочью или ионообменной мембраной. В одном особом выполнении, например при электролизе воды для получения водорода и кислорода или гремучего газа, в процесс электролиза вводят ионообменное вещество, в частности катионообменную смолу и/или анионообменную смолу, которая служит катализатором для повышения прохождения тока и одновременно в качестве водородного и/или кислородного донора может способствовать осуществлению способа. Таким образом, при силе тока, например 3900 С/мин, в зависимости от выполнения может быть достигнут кпд 0,6-0,85. Соответствующее устройство может производить гремучий газ в количестве 14,6 л/ч. Устройство для получения гремучего газа может быть составной частью двигателя или естественным образом производить необходимый для двигателя гремучий газ. Таким образом, можно сделать излишними сжижение и хранение гремучего газа, поскольку он может быть произведен непрерывно в требуемом количестве. Можно также отдельно получать и использовать водород и кислород.

Внутри трубчатого электрода 7 может находиться материал-заполнитель, в частности вата. Этот материал или вата может быть пропитан кислотой, преимущественно соляной кислотой. За счет этого можно значительно увеличить выход, как это приведено в примере 1, опыт №4.

Электролитически обработанной жидкостью может быть вода. Однако возможно также использование других жидкостей, из которых получают газ, например водород или другое вещество.

1. Способ получения водорода или кислорода, при котором жидкость, а именно воду, обрабатывают электролитическим путем, отличающийся тем, что в воде имеется ионообменное вещество, содержащее матрицу, анкерные группы и обмениваемые ионы.

2. Способ по п.1, отличающийся тем, что получаемым газом является водород.

3. Способ по п.1, отличающийся тем, что ионообменное вещество является кислым ионообменником.

4. Способ по п.3, отличающийся тем, что ионообменник является гелеобразным.

5. Способ по п.4, отличающийся тем, что ионообменник содержит вещества каталитического действия.

6. Способ по п.4, отличающийся тем, что ионообменник содержит энзимы каталитического действия и/или газовыделяющие энзимы.

7. Способ по любому из пп.1-6, отличающийся тем, что ионообменник поддерживают в движении.

8. Способ по п.7, отличающийся тем, что ионообменник поддерживают в жидкости во взвешенном состоянии.

9. Способ по п.8, отличающийся тем, что ионообменник подают непрерывно.

10. Способ по п.8, отличающийся тем, что указанный способ осуществляют многоступенчато.

11. Устройство для осуществления способа согласно пп.1-10, отличающееся тем, что указанное устройство содержит резервуар (1) с жидкостью, а именно с водой, в котором имеется ионообменное вещество, положительный электрод (6) и отрицательный электрод (7), выполненные с возможностью присоединения или присоединенные к источнику (13) тока.

12. Устройство по п.11, отличающееся тем, что электрод (7) выполнен трубчатым.

13. Устройство по п.11 или 12, отличающееся тем, что в жидкости, содержащей получаемый газ и ионообменное вещество, в частности, внутри трубчатого электрода (7), находится материал-заполнитель.

14. Устройство по п.13, отличающееся тем, что в материале-заполнителе имеется кислота.



 

Похожие патенты:
Изобретение относится к органической химии, а именно к способу получения 2-аминоэтансульфоновой кислоты взаимодействием 2-аминоэтилсерной кислоты с избытком сульфита натрия в водном растворе при кипячении в течении 20 часов с последующим отделением целевого продукта от минеральных солей электродиализом при температуре 30-45°С и постоянной плотности тока 1,2-3,0 А/дм2 .
Изобретение относится к области электрохимических производств, конкретно к технологии процесса изготовления и регенерации окиснометаллического электрода, применяемого в качестве анода при электролизе растворов хлоридов щелочных металлов, например при получении хлора и каустической соды.

Изобретение относится к способу получения электропроводящих поверхностных слоев оксида никеля из никельсодержащего материала. .
Изобретение относится к области коллоидной химии, а точнее к синтезу гелей кремниевой кислоты из силикатов щелочных металлов, в частности из силиката натрия как сравнительно дешевого и доступного сырья.

Изобретение относится к технологии получения фтора, а именно к конструкции среднетемпературного электролизера для промышленного получения фтора из расплава трифторида калия.

Изобретение относится к технологии получения фтора, а именно к конструкции среднетемпературного электролизера для промышленного получения фтора из расплава трифторида калия.

Изобретение относится к способу производства пероксида водорода, включающему в себя обеспечение электрохимической ячейки, содержащей анод и катод; контактирование катода с электролитом, содержащим по меньшей мере один органический медиатор, растворенный в по меньшей мере частично органической сплошной жидкой фазе, содержащей по меньшей мере частично органическую соль и нейтральный сорастворитель, реагирование органического медиатора на катоде с образованием по меньшей мере одной восстановленной формы этого медиатора; и реагирование упомянутой по меньшей мере одной восстановленной формы медиатора с кислородом с образованием пероксида водорода.

Изобретение относится к конструкциям электролизеров для получения водорода и кислорода путем электролиза воды. .

Изобретение относится к способу и устройству насыщения жидкости газом, причем жидкость насыщают одним из газов - кислородом или водородом. .
Изобретение относится к органической химии, а именно к способу получения 2-аминоэтансульфоновой кислоты взаимодействием 2-аминоэтилсерной кислоты с избытком сульфита натрия в водном растворе при кипячении в течении 20 часов с последующим отделением целевого продукта от минеральных солей электродиализом при температуре 30-45°С и постоянной плотности тока 1,2-3,0 А/дм2 .
Изобретение относится к области электрохимических производств, конкретно к технологии процесса изготовления и регенерации окиснометаллического электрода, применяемого в качестве анода при электролизе растворов хлоридов щелочных металлов, например при получении хлора и каустической соды.

Изобретение относится к способу получения электропроводящих поверхностных слоев оксида никеля из никельсодержащего материала. .
Изобретение относится к области коллоидной химии, а точнее к синтезу гелей кремниевой кислоты из силикатов щелочных металлов, в частности из силиката натрия как сравнительно дешевого и доступного сырья.

Изобретение относится к технологии получения фтора, а именно к конструкции среднетемпературного электролизера для промышленного получения фтора из расплава трифторида калия.

Изобретение относится к технологии получения фтора, а именно к конструкции среднетемпературного электролизера для промышленного получения фтора из расплава трифторида калия.

Изобретение относится к способу производства пероксида водорода, включающему в себя обеспечение электрохимической ячейки, содержащей анод и катод; контактирование катода с электролитом, содержащим по меньшей мере один органический медиатор, растворенный в по меньшей мере частично органической сплошной жидкой фазе, содержащей по меньшей мере частично органическую соль и нейтральный сорастворитель, реагирование органического медиатора на катоде с образованием по меньшей мере одной восстановленной формы этого медиатора; и реагирование упомянутой по меньшей мере одной восстановленной формы медиатора с кислородом с образованием пероксида водорода.

Изобретение относится к конструкциям электролизеров для получения водорода и кислорода путем электролиза воды. .

Изобретение относится к способу и устройству насыщения жидкости газом, причем жидкость насыщают одним из газов - кислородом или водородом. .
Изобретение относится к органической химии, а именно к способу получения 2-аминоэтансульфоновой кислоты взаимодействием 2-аминоэтилсерной кислоты с избытком сульфита натрия в водном растворе при кипячении в течении 20 часов с последующим отделением целевого продукта от минеральных солей электродиализом при температуре 30-45°С и постоянной плотности тока 1,2-3,0 А/дм2 .

Изобретение относится к способу получения водорода или кислорода, согласно которому воду обрабатывают электролитическим путем, при этом в воде имеется ионообменное вещество, содержащее матрицу, анкерные группы и обмениваемые ионы

Наверх