Устройство моделирования функционирования корабельного артиллерийского комплекса

Изобретение относится к военной технике, а именно к устройствам моделирования функционирования арткомплекса, и может быть использовано для оценки влияния различных факторов на результативность стрельбы корабельного арткомплекса по различным целям. Технический результат - возможность оценки эффективности поражения цели и определение на модели параметров, от которых зависит поражение цели. Устройство моделирования содержит последовательно соединенные блок моделирования движения цели в географической системе координат, блок вычисления параметров движения цели в корабельной стабилизированной системе координат, блок, моделирующий радиолокатор, блок фильтрации параметров движения цели, блок решения задачи встречи цели и снаряда, блок вычисления полных углов горизонтального наведения и полных углов вертикального наведения, задатчик ошибок приводов горизонтального и вертикального наведения артустановки, задатчик ошибок стрельбы первой группы, задатчик ошибок стрельбы третьей группы, блок определения промаха снаряда, блок вычисления вероятности поражения цели одним снарядом, блок вычисления вероятности поражения цели очередью снарядов и блок статистической обработки результатов стрельбы при различных метеоусловиях и определения вероятности поражения цели, блок моделирования движения своего корабля. 1 ил.

 

Изобретение относится к военной технике, а именно к имитаторам функционирования сложных систем вооружения.

В качестве аналогов предлагаемого устройства могут рассматриваться имитаторы и тренажеры, используемые для обучения боевых расчетов артиллерийских комплексов при стрельбе с корабля.

Однако в таких имитаторах не учитываются многие факторы, влияющие на результативность стрельбы в реальных условиях применения боевого оружия, что не позволяет их использовать при проектировании систем вооружения.

Технический результат состоит в оценке эффективности поражения цели и в определении на модели параметров, от которых зависит эффективность поражения. Эффективность поражения цели является одной из главных характеристик качества корабельного арткомплекса.

Для этого в устройство моделирования функционирования корабельного артиллерийского комплекса, содержащее последовательно соединенные блок моделирования движения цели в географической системе координат, блок вычисления параметров движения цели в корабельной стабилизированной системе координат, блок, моделирующий радиолокатор, блок фильтрации параметров движения цели, блок решения задачи встречи цели и снаряда, блок вычисления полных углов горизонтального наведения (ПУГН) и полных углов вертикального наведения (ПУВН), задатчик ошибок приводов горизонтального и вертикального наведения артустановки, задатчик ошибок стрельбы от технического рассеивания артустановки по вертикали и горизонтали, разброса индивидуальной начальной скорости снарядов и коэффициента формы снаряда, случайной ошибки установки и исполнения времени подрыва снаряда, задатчик ошибок стрельбы от изменения скорости и азимута баллистического ветра, баллистической плотности воздуха, блок определения промаха снаряда, блок вычисления вероятности поражения цели одним снарядом, блок вычисления вероятности поражения цели очередью снарядов и блок статистической обработки результатов стрельбы при различных метеоусловиях и определения вероятности поражения цели, а также задатчик ошибок измерения параметров движения корабля, задатчик помех радиолокатору, задатчик закона поражения цели, блок моделирования движения корабля, выходы которого соединены соответственно со вторым входом блока вычисления параметров движения цели в корабельной стабилизированной системе координат и через задатчик ошибок измерения параметров движения корабля - со вторыми входами блока, моделирующего радиолокатор, и блока вычисления ПУГН и ПУВН, выход задатчика помех радиолокатору соединен с третьим входом задатчика измеряемых координат цели, второй выход блока вычисления параметров движения цели в корабельной стабилизированной системе координат соединен со вторым входом блока определения промаха снаряда, а второй вход блока вычисления вероятности поражения цели одним снарядом соединен с выходом задатчика закона поражения цели.

Предлагаемое устройство представляет собой замкнутую имитационную модель функционирования типового корабельного артиллерийского комплекса, включающего артиллерийскую установку с боеприпасами различных видов и назначения, и систему управления стрельбой, обеспечивающую автоматическое сопровождение предназначенной к обстрелу цели, автоматическую выработку углов наведения артустановки с учетом параметров движения стреляющего корабля и ведение огня на поражение цели. В устройстве имитируется движение снарядов по расчетным траекториям их полета к цели, определяются промахи относительно обстреливаемой цели, моделируется результат обстрела с учетом реальных законов поражения применяемых боеприпасов, производится статистическая обработка результатов обстрела.

Устройство может быть использовано для оптимизации технических характеристик элементов арткомплекса при его проектировании и для оценки эффективности стрельбы арткомплекса по различным целям.

На чертеже дана функциональная схема заявленного устройства.

Устройство моделирования функционирования корабельного артиллерийского комплекса содержит блок моделирования движения цели в географической системе координат 1, блок вычисления параметров движения цели в корабельной стабилизированной системе координат 2, блок моделирования движения корабля 3, блок, моделирующий радиолокатор и вырабатывающий координаты цели в сферической системе координат (qц(t), εц(t), Dц(t)) 4, блок-задатчик помех радиолокатору 5, блок-задатчик ошибок измерения параметров движения корабля 6, блок фильтрации параметров движения цели 7, блок решения задачи встречи цели и снаряда 8, блок вычисления полных углов горизонтального наведения (ПУТН) и полных углов вертикального наведения (ПУВН) 9, блок-задатчик ошибок приводов горизонтального и вертикального наведения артустановки 10, блок-задатчик ошибок стрельбы от технического рассеивания артустановки по вертикали и горизонтали, разброса индивидуальной начальной скорости снарядов и коэффициента формы снаряда, случайной ошибки установки и исполнения времени подрыва снаряда 11, задатчик ошибок стрельбы от изменения скорости и азимута баллистического ветра, баллистической плотности воздуха 12, блок определения промаха снаряда 13, блок-задатчик закона поражения цели (условный закон поражения - УЗП, координатный закон поражения - КЗП) 14, блок вычисления вероятности поражения цели одним снарядом 15, блок вычисления вероятности поражения цели очередью снарядов 16, блок статистической обработки результатов стрельбы при различных метеоусловиях и определения вероятности поражения цели 17.

Устройство работает следующим образом.

В модели учитываются технические характеристики элементов корабельного арткомплекса и корабельных обеспечивающих средств, пространственно-временные параметры и законы движения целей, точностные характеристики определения текущих координат целей и параметров движения корабля (в зависимости от состояния морской поверхности), характеристики уязвимости движущихся целей и поражающего действия используемых боеприпасов, погрешности метеобаллистической подготовки стрельбы, алгоритм обстрела цели и многие другие факторы, влияющие на точность и результативность стрельбы.

В соответствии с принятой классификацией ошибок артиллерийской стрельбы (в системе трех групп) ошибки первой группы реализуются в математической модели случайными, независимыми от выстрела к выстрелу, возмущениями, учитывающими техническое рассеивание артустановки по вертикали и горизонтали, разброс индивидуальной начальной скорости снарядов, коэффициента формы снаряда, случайную ошибку установки и исполнения времени подрыва снаряда.

Ошибки второй группы формируются в модели автоматически, исходя из входных значений погрешности первичных измерений текущих координат цели и определения параметров движения своего корабля с учетом наличия непреднамеренного маневра цели на траектории ее движения и ряда других факторов, влияющих на точность выработки полных углов наведения артустановки.

Задача встречи снаряда с целью решается в модели методом интегрирования дифференциальных уравнений внешней баллистики снарядов.

Ошибки третьей группы реализуются на выходе математической модели также автоматически, путем возмущения метеобаллистических параметров в уравнениях внешней баллистики снаряда (скорости и азимута баллистического ветра, баллистической плотности воздуха, начальной скорости партии снарядов), задаваемых на вход модели в соответствии с условиями информационного обеспечения стрельбы и с учетом принимаемых при стрельбе мер организационно-технического характера.

При имитации стрельбы по противокорабельной ракете (ПКР) учитывается также возможность попадания в атакуемый корабль поврежденной ракеты или ее обломков. Эту возможность принято оценивать с помощью интегральной функции распределения дальности падения.

В блоке 1 моделируется движение цели: воздушной, морской или наземной. В модели движения воздушной и морской цели учитывается как программный, так и непреднамеренный маневр. В третьем блоке задается модель движения корабля, где учитывается скорость и курс, рысканье, бортовая и килевая качки и вертикальное перемещение центра качания корабля. Рысканье и качки моделируются синусоидальными функциями, постоянными на время одной реализации. В блоке 2 вычисляются параметры движения цели в корабельной стабилизированной системе координат. Далее, в блоке 4, моделируется работа радиолокатора и вырабатываются координаты цели в сферической системе координат. В блоке 5 задаются помехи измерения координат цели. В блоке 6 задаются ошибки измерения параметров движения корабля. В блоке 7 происходит фильтрация параметров движения цели. В блоке 8 решается задача встречи снаряда с целью без учета ошибок стрельбы первой и третьей групп. Задача встречи решается на основе интегрирования уравнений баллистики снаряда и уравнений движения цели. В блоке 9 вычисляются углы наведения артустановки в палубной (нестабилизированной) системе координат. В блоке 10 задаются ошибки исполнения приводов горизонтального и вертикального наведения артустановки. В блоке 11 в уравнения баллистики снаряда вносятся возмущения, определенные ошибками стрельбы первой группы. Далее, в блоке 12, в уравнения баллистики снаряда вносятся возмущения, определенные ошибками стрельбы третьей группы. В блоке 13 уравнения баллистики снаряда с полученными возмущениями интегрируются до точки подрыва снаряда. Для контактной стрельбы подрыв снаряда происходит при условии попадания в заданный объем цели. Для неконтактной стрельбы (снаряд с радиовзрывателем или дистанционным взрывателем) момент подрыва снаряда определяется соответственно или условием совпадения дальности снаряда и цели, или достижением заданного времени полета. Для неконтактной стрельбы в момент подрыва снаряда определяются параметры рассогласования между снарядом и целью: промах в плоскости ортогональной относительной скорости, расстояние между снарядом и целью и угол срабатывания - угол между вектором скорости снаряда и прямой, проходящей через нос цели и центр массы снаряда. В блоке 15 по полученным в блоке 13 параметрам рассогласования и законам поражения цели (УЗП или КЗП, поступающих из блока 14, в зависимости от типа снаряда) вычисляется вероятность поражения цели одним снарядом. В блоке 16 вычисляется поражение цели заданной очередью снарядов. В блоке 17 вычисляется усредненная вероятность поражения цели по разному количеству очередей снарядов при различных ошибках стрельбы третьей группы.

Устройство моделирования функционирования корабельного артиллерийского комплекса, содержащее последовательно соединенные блок моделирования движения цели в географической системе координат, блок вычисления параметров движения цели в корабельной стабилизированной системе координат, блок, моделирующий радиолокатор, блок фильтрации параметров движения цели, блок решения задачи встречи цели и снаряда, блок вычисления полных углов горизонтального наведения (ПУГН) и полных углов вертикального наведения (ПУВН), задатчик ошибок приводов горизонтального и вертикального наведений артустановки, задатчик ошибок стрельбы от технического рассеивания артустановки по вертикали и горизонтали, разброса индивидуальной начальной скорости снарядов и коэффициента формы снаряда, случайной ошибки установки и исполнения времени подрыва снаряда, задатчик ошибок стрельбы от изменения скорости и азимута баллистического ветра, баллистической плотности воздуха, блок определения промаха снаряда, блок вычисления вероятности поражения цели одним снарядом, блок вычисления вероятности поражения цели очередью снарядов и блок статистической обработки результатов стрельбы при различных метеобаллистических условиях и определения вероятности поражения цели, а также задатчик ошибок измерения параметров движения корабля, задатчик помех радиолокатору, задатчик закона поражения цели, блок моделирования движения корабля, выходы которого соединены соответственно со вторым входом блока вычисления параметров движения цели в корабельной стабилизированной системе координат и через задатчик ошибок измерения параметров движения корабля - со вторыми входами блока, моделирующего радиолокатор, и блока вычисления ПУГН и ПУВН, выход задатчика помех радиолокатору соединен с третьим входом задатчика измеряемых координат цели, второй выход блока вычисления параметров движения цели в корабельной стабилизированной системе координат соединен со вторым входом блока определения промаха снаряда, а второй вход блока вычисления вероятности поражения цели одним снарядом соединен с выходом задатчика закона поражения цели.



 

Похожие патенты:

Изобретение относится к ремонту сложных автоматических специальных систем танков. .

Изобретение относится к области гироскопического приборостроения и может найти широкое применение для измерения угловой скорости уходов гиростабилизаторов головок самонаведения ракет «воздух-воздух» и других сложных гироскопических устройств.

Изобретение относится к пусковым установкам. .

Изобретение относится к перемещаемым по воздуху оружейным платформам. .

Изобретение относится к ракетной технике, в частности к надводным ракетным системам. .

Изобретение относится к средствам противовоздушном обороны, а именно к системе обороны корабля от низколетящих средств воздушного нападения, может быть использовано в комплексах вооружения надводных кораблей.

Изобретение относится к военной технике, в частности к корабельным пусковым установкам. .

Изобретение относится к ракетному вооружению, в частности к зенитно-ракетным комплексам надводных кораблей. .

Корабль // 2249535
Изобретение относится к судостроению и касается разборки средств снижения вероятности и дальности обнаружения корабля радиотехническими средствами противника. .

Изобретение относится к области ракетной техники и может быть использовано в пусковых установках (ПУ) на кораблях, имеющих вертолетную палубу. .

Изобретение относится к судостроению и касается создания средств для противодействия радиолокационному обнаружению плоских палубных надстроек кораблей. .

Изобретение относится к военной технике, в частности к корабельным пусковым установкам (ПУ) вертикального пуска. .

Изобретение относится к области военных кораблей

Изобретение относится к производству охранных сооружений и систем, в состав которых входят колючережущие элементы, и может быть использовано для изготовления инженерных систем защиты различных режимных и иных объектов, в частности морских судов, от несанкционированного проникновения на них людей

Изобретение относится к области авиации, более конкретно к электромагнитному аэрофинишеру

Изобретение относится к авиационной технике и касается устройств и механизмов для обеспечения взлета и посадки летательных аппаратов, может быть использовано для оборудования укороченных взлетных и посадочных полос авианосцев. Взлетно-посадочный комплекс авианесущего корабля содержит катапульту и/или авиафинишер, работа которых основана на усилии, по крайней мере, одного подводного парашюта. Распределение усилия парашютов по потребителям обеспечивается либо не обеспечивается барабанно-распределительным механизмом. Обеспечивается возможность использования силового устройства для аэрофинишера и катапульты, улучшаются условия их эксплуатации. 14 з.п. ф-лы, 7 ил.

Изобретение относится к устройству для запуска ракеты с корабля и к кораблю, оборудованному таким устройством. Устройство для запуска ракет с корабля содержит по меньшей мере одну ракетную пусковую установку (9, 9'). Устройство содержит шахту (4), ограниченную боковыми стенками, по меньшей мере две (7, 8) из которых образуют щиты, проходящие по периферии корабля. Шахта является открытой над наружной палубой корабля. Пусковая установка (9, 9') расположена в шахте таким образом, чтобы она могла служить для запуска ракеты над боковым щитом (7, 8) шахты, проходящим по периферии корабля. Устройство содержит средство (14, 14') отведения реактивных газов ракеты, содержащее канал (19, 19'), открывающийся в отверстие (20), предусмотренное в боковом щите (7) шахты, проходящем по периферии корабля. Боковые щиты (7, 8) шахты имеют высоту, адаптированную для маскировки ракет, располагающихся на установке, для наклона, близкого к горизонтали корабля. Обеспечивается удовлетворительная защита ракет от асимметричных угроз, обеспечивается минимизированная радиолокационная и визуальная сигнатура. 2 н. и 7 з.п. ф-лы, 2 ил.

Изобретение относится к авиационной технике и может быть использовано для оборудования укороченных взлетных и посадочных полос наземных аэродромов и авианосцев. Взлетно-посадочный комплекс с универсальным силовым устройством для обеспечения работы катапульты и/или аэрофинишера содержит, по крайней мере, один рабочий цилиндр, внутри которого установлен поршень, челнок с крюком, устройства управления, систему питания рабочей средой, включающую генератор и/или аккумулятор рабочей среды, палубное приемное устройство аэрофинишера, взлетный трамплин, сигнальные огни оптической системы посадки. Комплекс содержит, по крайней мере, один рабочий цилиндр, по крайней мере, с одной торцевой крышкой, внутри рабочего цилиндра установлен поршень одностороннего или двухстороннего действия, оборудованный, по крайней мере, с одной стороны силовым тросом; барабанно-распределительный механизм с тросо-шкивной системой; аккумулятор рабочей среды системы питания рабочей средой оборудован подвижным подпорным поршнем двухстороннего действия или аккумулятор не оборудован подпорным поршнем. Взлетный трамплин оборудован катапультой или не оборудован. Кормовой и/или боковой борт корабля оборудован, по крайней мере, одной стрелой приемного устройства с механизмом регулирования угла наклона к посадочной полосе. Стрела оборудована направляющими для движения каретки, на которой установлен створ с U- или V-образным расположением балок. Верхняя часть балок оборудована приемным тросом. Штанга крюка летательного аппарата выполнена с возможностью удлинения. Крюк оборудован роликом или не оборудован. Обеспечивается возможность использования одного универсального силового устройства с уменьшенными весогабаритными характеристиками для катапульты и/или аэрофинишера. 24 з.п. ф-лы, 5 ил.

Изобретение относится к морским системам безопасности. Морская система безопасности имеет сливы для жидкой или газообразной субстанции, по меньшей мере один насос, по меньшей мере две отдельные трубопроводные системы, по меньшей мере два различных контрольных элемента, управляющую систему и сигнальные устройства. Сливы отдельных трубопроводных систем выполнены с возможностью закрепления на корпусе судна и расположены на различных участках корпуса судна. Управляющая система соединена с контрольными элементами. Для трубопроводных систем предусмотрены раздельно управляемые клапаны, которые в трубопроводных системах и/или в присоединенных к ним сливах обуславливают различные подачи различных субстанций. В корпусе судна имеются по меньшей мере два бака для различных субстанций или их концентраций, соединенных с клапанами и/или насосами. Достигается улучшение системы безопасности путем затруднения или пресечения для нападающих доступа на судно. 15 з.п. ф-лы, 10 ил.

Изобретение относится к области судостроения и касается снижения тепловой заметности судна. Это достигается тем, что в устройстве для уменьшения инфракрасного излучения газового потока и наружной нагретой поверхности дымовой трубы судна предусмотрены вертикальные и горизонтальные экранирующие пластины, изготовленные из композитных материалов, обладающих радиопоглощающими, теплоизоляционными и теплоотражающими свойствами. Технический результат заключается в уменьшении вероятности обнаружения судна с помощью инфракрасных наблюдательных приборов, работающих в инфракрасном и радиолокационном диапазонах частот. 1 з.п. ф-лы, 3 ил.
Наверх