Роторно-поршневой трехтактный двигатель внутреннего сгорания

Изобретение относится к двигателестроению. Роторно-поршневой трехтактный двигатель внутреннего сгорания имеет варианты исполнения для рабочих циклов за один или два оборота коленвала. Двигатель содержит неподвижный корпус с выполненной в нем трехсторонней рабочей камерой, газораспределительный механизм и осесимметричный ротор-поршень с цилиндрическими поверхностями головок. Рабочая камера выполнена в форме фигуры постоянной ширины, образованной радиусами сопряженных дуг. Механизм привода двигателя снабжен двумя парами роликов, установленных на торцах ротора-поршня соосно цилиндрическим поверхностям головок и взаимодействующих с цилиндрическими рабочими поверхностями секторов на коленвалу. Ротор-поршень расположен внутри рабочей камеры и установлен центральным отверстием на втулку-эксцентрик. Втулка-эксцентрик размещена на кривошипной шейке выходного коленвала. Эксцентриситет коленвала и втулки-эксцентрика выбирается по соотношениям соответственно вариантам исполнения

где d - диаметр окружности, вписанной в равносторонний треугольник с вершинами в центрах сопряженных дуг; К - эксцентриситет коленвала; Е - эксцентриситет втулки-эксцентрика. Техническим результатом является повышение надежности, долговечности и мощности при уменьшении весогабаритных показателей, а также упрощение конструкции. 10 ил.

 

Изобретение относится к двигателестроению, в частности к роторно-поршневым двигателям внутреннего сгорания. В основу изобретения поставлена задача создания надежного в работе и долговечного роторно-поршневого двигателя с наибольшей мощностью при меньших весогабаритных показателях и простого как в технологическом, так и конструктивном исполнении.

Роторно-поршневой двигатель, имеющий варианты исполнения для рабочих циклов за один или два оборота коленвала, содержит неподвижный корпус с плоскими уплотнительными крышками на его торцах и выполненной в нем трехсторонней рабочей камерой в форме фигуры постоянной ширины, образованной радиусами сопряженных дуг, удовлетворяющих условию

где М - ширина размаха по наружным кромкам уплотнительных элементов, установленных на торцах ротора-поршня;

R - больший радиус сопряженных дуг;

r - меньший радиус сопряженных дуг;

D - диаметр в центре торцовых крышек, охватывающий расположенные в центре вентиляционные каналы;

газораспределительный механизм двигателя в виде двух окон газообмена, выполненных в стенках корпуса рабочей камеры вблизи одной из ее вершин, расположенной напротив стороны с источником воспламенения (форсункой или свечой зажигания); осесимметричный ротор-поршень, снабженный двумя парами роликов, установленных на торцах ротора-поршня соосно цилиндрическим поверхностям его головок и взаимодействующих с цилиндрическими рабочими поверхностями секторов на коленвалу; систему уплотнения ротора-поршня, состоящую из пластин радиального уплотнения, установленных в вершинах головок ротора-поршня, и уплотнительных элементов, расположенных на его торцах. Для выхода привода из мертвой точки и динамической балансировки подвижных частей двигателя на концах коленвала установлены маховики.

Кроме того, в механизме двигателя ротор-поршень, расположенный внутри рабочей камеры, установлен центральным отверстием на втулку-эксцентрик, размещенную на коленвалу, при этом эксцентриситет коленвала и втулки-эксцентрика выбирается по соотношениям соответственно вариантам исполнения

или

где d - диаметр окружности, вписанной в равносторонний треугольник с вершинами в центрах сопряженных дуг;

К - эксцентриситет коленвала;

Е - эксцентриситет втулки-эксцентрика.

Изобретение относится к двигателестроению, в частности к роторно-поршневым двигателям внутреннего сгорания.

Из уровня техники известен роторный двигатель Ф.Ванкеля, содержащий неподвижный корпус с выполненной в нем рабочей камерой эпитрохоидной формы, в стенке которой выполнены окна газообмена, ротор-поршень трехгранной формы с радиальными гранями, являющимися поверхностями рабочих камер, на которых выполнены выемки для образования требуемой степени сжатия. С торцовой стороны ротора-поршня установлен синхронизирующий венец для внутреннего зацепления с шестерней на кривошипном валу. Кривошипный механизм двигателя в виде коленвала выполнен за одно целое с шестерней [Е.И.Ипатов и др. «Судовые роторные двигатели» (стр.46-73)].

Недостатками данного двигателя являются наличие сложной эпитрохоидной формы рабочей камеры, что приводит к технологическим трудностям при ее изготовлении и измерительном контроле, а также не обеспечивается необходимая турбулизация смесеобразования в серповидной камере сгорания, что отрицательно сказывается на массовой скорости и качестве сгорания. К недостаткам относятся и особенности двигателя, при которых происходит смешивание выхлопных газов и нового заряда, низкая надежность в работе и долговечность радиальных уплотнений.

Известен роторно-поршневой двигатель внутреннего сгорания, имеющий варианты исполнения для рабочих циклов за один или два оборота коленвала, содержащий неподвижный корпус с плоскими уплотнительными крышками на его торцах и выполненной в нем трехсторонней рабочей камерой в форме фигуры постоянной ширины, образованной радиусами сопряженных дуг, удовлетворяющих условию

где М - ширина размаха по наружным кромкам уплотнительных элементов, установленных на торцах ротора-поршня;

R - больший радиус сопряженных дуг;

r - меньший радиус сопряженных дуг;

D - диаметр в центре торцовых крышек, охватывающий вентиляционные каналы.

В двигателе имеется газораспределительный механизм в виде двух окон газообмена, выполненных в стенках корпуса рабочей камеры вблизи одной из ее вершин, расположенной напротив стороны с установленным на ней источником воспламенения. А также осесимметричный ротор-поршень с цилиндрическими поверхностями головок, установленный на коленвалу при помощи ползуна, размещенного в продольном пазу ротора-поршня, при этом длина ротора-поршня, который разделяет рабочую камеру на две полости, равна постоянной ширине рабочей камеры. Ротор-поршень двигателя снабжен двумя парами роликов, установленных на его торцах соосно цилиндрическим поверхностям головок и взаимодействующих с цилиндрическими рабочими поверхностями секторов на коленвале (RU, патент 2152522 от 27.11.1998).

Недостатком данного двигателя является наличие в роторе-поршне продольного паза с размещенным в нем ползуном, которому необходимо высокое качество рабочих поверхностей скольжения при жестких требованиях симметричности сопрягаемых деталей, что приводит к технологическим трудностям при изготовлении и ремонте. При этом ползун представляет собой разъемный подшипник скольжения с высокими параметрами нагрузки в парах трения как с кривошипной шейкой коленвала, так и пазом ротора-поршня, эта сложность конструкции ведет к снижению надежности и долговечности механизма, с учетом взаимной ограниченности размеров кривошипной шейки и ширины паза. Подобные ограничения возможностей механизма содержатся и при создании представленного двигателя в случае использования шатуна, встроенного в конструкцию ротора-поршня, вместо ползуна.

В основу изобретения поставлена задача создания надежного в работе и долговечного роторно-поршневого двигателя с наибольшей мощностью при меньших весогабаритных показателях и простого как в технологическом, так и конструктивном исполнении.

Поставленная задача решается тем, что в заявленном роторно-поршневом двигателе, содержащем неподвижный корпус с плоскими уплотнительными крышками на его торцах и выполненной в нем трехсторонней камерой в форме фигуры постоянной ширины, образованной радиусами сопряженных дуг, удовлетворяющих условию

где М - ширина размаха по наружным кромкам уплотнительных элементов, установленных на торцах ротора-поршня;

R - больший радиус сопряженных дуг;

r - меньший радиус сопряженных дуг;

D - диаметр в центре торцовых крышек, охватывающий вентиляционные каналы,

газораспределительный механизм двигателя в виде двух окон газообмена, выполненных в стенках корпуса рабочей камеры вблизи одной из ее вершин, расположенной напротив стороны с установленным на ней источником воспламенения (форсункой или свечой зажигания), осесимметричный ротор-поршень с цилиндрическими поверхностями головок, расположенный в рабочей камере, а длина его равна постоянной ширине рабочей камеры, систему уплотнения ротора-поршня, состоящую из пластин радиального уплотнения, установленных в вершинах головок ротора-поршня, и уплотнительных элементов, расположенных на его торцах, механизм привода двигателя, снабженный двумя парами роликов, установленных на торцах ротора-поршня соосно цилиндрическим поверхностям его головок и взаимодействующих с цилиндрическими рабочими поверхностями секторов на коленвалу, согласно изобретению ротор-поршень, расположенный внутри рабочей камеры, установлен центральным отверстием на втулку-эксцентрик, размещенную на кривошипной шейке выходного коленвала, при этом эксцентриситет коленвала и втулки-эксцентрика выбирается по соотношениям соответственно вариантам исполнения

или

где d - диаметр окружности, вписанной в равносторонний треугольник с вершинами в центрах сопряженных дуг;

К - эксцентриситет коленвала;

Е - эксцентриситет втулки-эксцентрика.

Именно выполнение в двигателе внутреннего сгорания (ДВС) механизма привода, снабженного ротором-поршнем, расположенным внутри рабочей камеры и установленным центральным отверстием на втулку-эксцентрик, размещенную на кривошипной шейке выходного коленвала, при этом эксцентриситет коленвала и втулки-эксцентрика выбраны по соотношениям соответственно вариантам исполнения

или

где d - диаметр окружности, вписанной в равносторонний треугольник с вершинами в центрах сопряженных дуг;

К - эксцентриситет коленвала;

Е - эксцентриситет втулки-эксцентрика,

отличает заявленное техническое решение от прототипа и обуславливает соответствие этого решения критерию «НОВИЗНА».

Из уровня техники известны роторно-поршневые двигатели с механизмами, обеспечивающие порядок рабочего процесса двигателя внутреннего сгорания и определенную траекторию движения ротора-поршня под давлением рабочих газов в рабочей камере при передаче энергии на выходной коленвал. Однако из уровня техники неизвестны роторно-поршневые двигатели с приводом, снабженным втулкой-эксцентриком, связывающей ротор-поршень с коленвалом в единый кинематический механизм внутри рабочей камеры и взаимодействующий с ней в процессе работы, что обеспечивается при условии выбора соотношений эксцентриситетов коленвала и втулки-эксцентрика в соответствии с вариантами исполнения

или

где d - диаметр окружности, вписанной в равносторонний треугольник с вершинами в центрах сопряженных дуг;

К - эксцентриситет коленвала;

Е - эксцентриситет втулки-эксцентрика,

что доказывает соответствие заявленного технического решения критерию «ИЗОБРЕТАТЕЛЬСКИЙ УРОВЕНЬ».

Наличие промежуточного звена в кинематической связи механизма двигателя между ротором-поршнем и выходным коленвалом в виде втулки-эксцентрика, размещенной в центральном отверстии ротора-поршня и установленной на кривошипной шейке коленвала, обеспечивает три одинаковых такта движения ротора-поршня в рабочей камере за один оборот коленвала. Выбранные соотношения эксцентриситетов выходного коленвала и втулки в соответствии с вариантами исполнений двигателя

или

где d - диаметр окружности, вписанной в равносторонний треугольник с вершинами в центрах сопряженных дуг;

К - эксцентриситет коленвала;

Е - эксцентриситет втулки-эксцентрика,

позволяют получить два типа двигателя с разными свойствами, основными признаками отличия в них является выполнение теплового рабочего процесса за один или два оборота выходного коленвала, что предопределит различие потребительских свойств и параметров при использовании (частота вращения, удельная масса и т.п.).

Благодаря простым цилиндрическим формам рабочих поверхностей втулки-эксцентрика и отверстия в роторе-поршне, отсутствию разъемных деталей, повышению их несущей способности, упрощению технологии изготовления и ремонта в процессе эксплуатации повысится надежность двигателя, уменьшится количество деталей и затраты на производство, что и доказывает соответствие заявленного технического решения критерию «ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ».

Порядок и принципы работы роторно-поршневого двигателя внутреннего сгорания поясняются техническими чертежами, где схематически изображено:

фиг.1 - положение элементов двигателя в мертвой точке, перед началом рабочего хода, разрез А-А на фиг.2;

фиг.2 - общий вид роторно-поршневого двигателя, совершающего рабочий цикл за 1 оборот коленвала;

фиг.3 - положение элементов двигателя в мертвой точке, перед началом рабочего хода, разрез Б-Б на фиг.4;

фиг.4 - общий вид роторно-поршневого двигателя, совершающего рабочий цикл за 2 оборота коленвала;

фиг.5 - схема положений ротора-поршня в начале (штриховые линии) и средине 1 такта впуск-выпуск двигателя с рабочим циклом за 1 оборот;

фиг.6 - схема положений ротора-поршня в начале (штриховые линии) и перед концом 2 такта сжатия двигателя с рабочим циклом за 1 оборот;

фиг.7 - схема положений ротора-поршня в начале (штриховые линии) и перед концом 3 такта рабочий ход - расширение;

фиг.8 - схема положений ротора-поршня в начале (штриховые линии) и средине 1 такта впуск-выпуск двигателя с рабочим циклом за 1 оборот;

фиг.9 - схема положений ротора-поршня в начале (штриховые линии) и перед концом 2 такта сжатия двигателя с рабочим циклом за 1 оборот;

фиг.10 - схема положений ротора-поршня в начале (штриховые линии) и перед концом 3 такта рабочий ход - расширение;

Для обеспечения непрерывной работы любого двигателя внутреннего сгорания, и роторно-поршневого тоже, в его рабочую камеру 2, расположенную внутри неподвижного корпуса 1, необходимо периодически вводить каждый раз новые порции воздуха и смешивать с ним топливо в пропорции и качестве смеси, пригодной к воспламенению и совершению работы рабочим телом. Отработавшие продукты сгорания выбрасывать в атмосферу.

Приготовление топливовоздушной смеси может быть:

внешним - с электронным впрыском в воздух впускного патрубка и тому подобным способом;

внутренним - при впрыске топлива форсункой 16 непосредственно в камеру сгорания после предварительного сжатия.

Воспламенение топливовоздушной смеси может происходить как от свечи зажигания, установленной на место форсунки 16 при внешнем смесеобразовании, например с использованием бензина, так и после впрыска дизельного топлива в камеру сгорания 6 форсункой 16 от достаточно высокой температуры предварительно сжатого заряда воздуха в конце процесса сжатия.

Совместная работа кинематики механизма двигателя и газораспределительного процесса в нем позволяет осуществлять необходимую для непрерывного действия двигателя последовательность в чередовании пяти процессов в рабочей камере 2, составляющих рабочий цикл: впуск, сжатие, сгорание, расширение и выпуск.

Рабочий цикл преобразует в механическую работу часть тепловой энергии, выделяющейся при сгорании топливной смеси в рабочей камере 2 в виде быстрого подъема давления газов, и состоит из трех тактов.

Тактом является часть рабочего цикла, осуществляемая в интервале перемещения (поворота) ротора-поршня 4 между двумя мертвыми точками. В ходе каждого такта ротор-поршень 4 совершает плавное начало хода, движение и плавную остановку в конце, а после остановки, изменив центр вращения, начинает новый такт, сохранив направление движения. За три такта ротор-поршень 4 поворачивается на 180°, три раза по 60° в каждом такте.

Механизм привода двигателя обеспечивает заданный порядок в три такта движения ротора-поршня 4 за время совершения полного рабочего цикла в рабочей камере 2. Внутренняя форма рабочей камеры 2 - это сопряженные цилиндрическими поверхностями фигуры постоянной ширины, при этом цилиндры вершин очерчены малыми дугами, а сторон - большими.

Такты происходят поочередно в течение поворота ротора-поршня 4 в вершинах трехсторонней рабочей камеры 2 вокруг центров «а», «b» и «с» сопряженных дуг. Обе головки ротора-поршня 4 представляют собой части цилиндрических поверхностей, вписанные в вершины рабочей камеры 2. Расстояние между центрами цилиндров головок ротора-поршня 4 равно расстояниям между центрами дуг фигуры постоянной ширины. Геометрическая форма сторон ротора-поршня 4 произвольна, но выполнена в соответствии с требованиями для камер сгорания, общими для всех двигателей внутреннего сгорания, например в форме усеченной сферы.

Ротор-поршень 4 под действием втулки-эксцентрика 5, установленной в его центральном отверстии под действием коленвала 3, поворачивается на 60° за каждый такт, от мертвой точки в начале такта до мертвой точки в конце такта. Втулка-эксцентрик 5 приводится в движение кривошипной шейкой коленвала 3, который за каждый такт поворачивается на 120° по часовой стрелке или на 240° против часовой стрелки, в зависимости от исполнения секторов 8 на коленвале 3.

Для обеспечения однозначного порядка и направления вращения ротора-поршня 4 вокруг центров «a», «b» и «с» сопряженных дуг механизм привода снабжен двумя парами роликов 7, установленных на торцах ротора-поршня 4 соосно цилиндрам его головок. Ролики 7 попарно взаимодействуют с рабочими поверхностями секторов 8, перекатываясь по ним во время поворота коленвала 3, что обеспечивает удержание роликов 7 и одну из головок ротора-поршня 4 в центре их вращения в одной из вершин трехсторонней рабочей камеры 2 в течение такта.

Уплотнение ротора-поршня 4 в рабочей камере 2 осуществляется пластинами 9 по радиальным стенкам рабочей камеры 2, а уплотнительными элементами 10 - по торцам крышек 11 и 12, установленных неподвижно на торцах корпуса 1 и закрывающих рабочую камеру 2.

Ротор-поршень 4, оснащенный радиальными уплотнительными пластинами 9 и торцовыми уплотнительными элементами 10, в течение всего рабочего цикла разделяет рабочую камеру 2 на две полости - надпоршневую и подпоршневую. Механизм газораспределения при этом неразрывно согласован в совершении рабочего цикла с механизмом привода за счет положения окон 14 и 15 газообмена вблизи одной из вершин рабочей камеры 2, расположенной напротив стороны с форсункой 16 при внутреннем смесеобразовании, или со свечой зажигания при внешнем смесеобразовании. Начало и конец окон 14 и 15 выполнены так, что по ходу движения пластин 9 радиального уплотнения ротора-поршня 4 в рабочей камере 2 происходит своевременное открывание и закрывание их для впуска и выпуска газов, обеспечивая тем самым необходимое чередование рабочих процессов двигателя внутреннего сгорания.

Для выхода из мертвой точки и перемещений, не связанных с получением энергии под давлением нагретого от сгорания топлива газов, в роторно-поршневом двигателе на концах коленвала 3 установлены, со шпонками 19 и крышками 20, маховики 17 и 18. Они дополнительно служат для динамической балансировки масс подвижных деталей двигателя относительно центра вращающегося с ними коленвала 3. Съем металла для обеспечения сбалансированности перемещающихся масс деталей в двигателе производится традиционно, например, в местах на внутренних торцах маховиков 17 и 18.

Первый такт - впуск-выпуск. Он происходит за время поворота ротора-поршня 4 в вершине рабочей камеры 2 вокруг центра «а» сопряженных дуг. В течение всего первого такта через впускное окно 14 в рабочую камеру 2 поступает свежий заряд, а через окно 15 выпускаются остаточные отработавшие газы. Начальное положение ротора-поршня 4 показано штриховыми линиями.

Второй такт - сжатие. Он происходит при повороте ротора-поршня 4 вокруг центра «b» сопряженных дуг. Начинается такт тем, что перекрывается впускное окно 14 пластиной 9 радиального уплотнения ротора-поршня 4 в момент, когда скорость потока газов на впуске замедляется до минимума. Затем происходит сжатие заряда при движении ротора-поршня 4 к мертвой точке, образуя в конце хода замкнутую камеру сгорания 6. В процессе сжатия заряда происходит его нагрев, температура которого зависит от степени и скорости сжатия. Заряд воспламеняется вблизи от мертвой точки с определенным опережением в тот момент, при котором резкий подъем давления газов в камере сгорания 6 выпадет на начало рабочего хода и процесса расширения газов (рабочего тела). Опережение воспламенения выполняется в зависимости от исполнения секторов 8, ориентировочно, на 10°…20° или на 20°…40° поворота коленвала 3 до мертвой точки либо от температуры возникшей в процессе сжатия после впрыска дизельного топлива форсункой, либо от свечи зажигания при бензиновом внешнем смесеобразовании.

Третий такт - рабочий ход, расширение. В течение третьего такта ротор-поршень 4 поворачивается вокруг центра «с» сопряженных дуг. Происходит расширение газов и преобразование энергии сгоревшего топлива в механическое движение ротора-поршня 4 под давлением газов и вращение коленвала 3 с накоплением кинетической энергии маховиками 17 и 18 и подвижными деталями двигателя в целом. В конце расширения, после открытия выпускного окна 15, начинается выпуск, заканчивается третий такт и рабочий цикл.

В процессе сжатия и расширения в рабочей камере 2 под ротором-поршнем 4 происходит вентилирование и очистка отделенной подпоршневой части рабочей камеры 2 от остаточных газов за счет инерции уходящих выхлопных газов и подходящего воздуха из патрубка системы впуска или под действием нагнетателя наддува. Эта особенность конструкции двигателя указывает на то, что в представленном роторно-поршневом ДВС лучше использовать внутреннее смесеобразование. Допустим и дозированный впрыск топлива в конец впускного канала или в поток впускаемого воздуха непосредственно в рабочую камеру на такте впуска в целях исключения потерь топлива.

Геометрическое соотношение между радиусами сопряженных дуг должно удовлетворять требованиям формулы

где М - ширина размаха по наружным кромкам уплотнительных элементов 10, установленных на торцах ротора-поршня 4;

R - больший радиус сопряженной дуги;

r - меньший радиус сопряженной дуги;

D - диаметр в центре крышек 11 и 12, охватывающий расположенные в центре вентиляционные каналы.

Оно определяет размеры рабочей камеры 2, ротора-поршня 4, эксцентриситет кривошипной шейки коленвала 3 и втулки-эксцентрика 5, а также обеспечивает необходимое отделение внутренней полости ротора-поршня 4 от полостей рабочей камеры 2.

Роторно-поршневой трехтактный двигатель внутреннего сгорания, имеющий варианты исполнения для рабочих циклов за один или два оборота коленвала, содержащий неподвижный корпус с плоскими уплотнительными крышками на его торцах и выполненной в нем трехсторонней рабочей камерой в форме фигуры постоянной ширины, образованной радиусами сопряженных дуг, удовлетворяющих условию

где М - ширина размаха по наружным кромкам уплотнительных элементов, установленных на торцах ротора-поршня;
R - больший радиус сопряженных дуг;
r - меньший радиус сопряженных дуг;
D - диаметр в центре торцовых крышек, охватывающий расположенные в центре вентиляционные каналы,
газораспределительный механизм в виде двух окон газообмена, выполненных в стенках корпуса рабочей камеры вблизи одной из ее вершин, расположенной напротив стороны с установленным на ней источником воспламенения, осесимметричный ротор-поршень с цилиндрическими поверхностями головок, расположенный в рабочей камере, а длина его равна постоянной ширине рабочей камеры, систему уплотнения ротора-поршня, состоящую из пластин радиального уплотнения, установленных в вершинах головок ротора-поршня, и уплотнительных элементов, расположенных на его торцах, механизм привода двигателя, снабженный двумя парами роликов, установленных на торцах ротора-поршня соосно с цилиндрическими поверхностями головок и взаимодействующих с цилиндрическими рабочими поверхностями секторов на коленвалу, отличающийся тем, что ротор-поршень, расположенный внутри рабочей камеры, установлен центральным отверстием на втулку-эксцентрик, размещенную на кривошипной шейке выходного коленвала, при этом эксцентриситет коленвала и втулки-эксцентрика выбирается по соотношениям соответственно вариантам исполнения:

или

где d - диаметр окружности, вписанной в равносторонний треугольник с вершинами в центрах сопряженных дуг;
K - эксцентриситет коленвала;
Е - эксцентриситет втулки-эксцентрика.



 

Похожие патенты:

Изобретение относится к двигателестроению. .

Изобретение относится к двигателям внутреннего сгорания. .

Изобретение относится к двигателям внутреннего сгорания. .

Изобретение относится к роторно-лопастным двигателям внутреннего сгорания. .

Изобретение относится к силовым установкам, обеспечивающим механической энергией от одного до нескольких потребителей одновременно. .

Изобретение относится к двигателям внутреннего сгорания. .

Изобретение относится к двигателям внутреннего сгорания. .

Изобретение относится к двигателестроению. .

Изобретение относится к двигателям. .

Изобретение относится к двигателям внутреннего сгорания. .

Изобретение относится к двигателестроению. .

Изобретение относится к силовым установкам для автомобилей. .

Изобретение относится к двигателям внутреннего сгорания. .

Изобретение относится к поршневым моторам, может быть использовано как двигатель внутреннего сгорания, насос для перекачивания жидкостей и газов. .

Изобретение относится к машиностроению, в частности к роторным машинам объемного действия. .

Изобретение относится к машиностроению. .
Наверх