Способ определения концентрации ионов в жидких растворах электролитов

Изобретение относится к области аналитической химии и может быть использовано для физико-химического анализа жидких растворов электролитов. Предложен способ определения концентрации ионов в жидких растворах электролитов, заключающийся в определении концентрации ионов по величине разности потенциалов, возникающей между коаксиальными цилиндрическими электродами, погруженными во вращаемый исследуемый раствор электролита. Данный способ позволяет определить концентрацию ионов в жидких растворах без применения гальванического элемента, состоящего из индикаторного электрода и электрода сравнения, для изготовления которых требуется использование драгоценных материалов, таких как серебро, ртуть и т.д. 2 ил.

 

Изобретение относится к области аналитической химии и может быть использовано для физико-химического анализа жидких растворов электролитов.

Аналогами изобретения являются вольтамперометрические способы анализа и исследования жидких растворов электролитов [1]. Эти способы основаны на изучении зависимости силы тока, протекающего при электролизе исследуемого раствора, от напряжения, приложенного к электролитической ячейке. Процесс электролиза ведут при изменяющемся напряжении от нуля до выбранного значения. При этом регистрируют ток, протекающий через ячейку при всех задаваемых значениях напряжения, в итоге получают зависимость величины тока от разности потенциалов, по которой и определяют состав раствора. Недостатком вольтамперометрических методов является повышенная сложность ячеек, в которых проводится исследование состава раствора, затрудняющая, в частности, их использование непосредственно в анализируемых средах (например, в водоемах, водотоках, технологических трубопроводах, на линиях сбросов).

Прототипом предлагаемого способа изобретения является потенциометрический способ анализа. Он основан на измерении электродвижущих сил обратимых гальванических элементов. Обычно гальванические элементы, используемые в потенциометрии, включают пару электродов, которые могут быть погружены в один и тот же раствор (элемент без переноса) или в два различных по составу раствора, имеющих между собой жидкостный контакт (элемент с переносом). Для определения концентраций ионов в растворе наиболее пригодны элементы с переносом. Такой элемент включает индикаторный электрод, действующий обратимо к иону, активность (или концентрация) которого определяется, и второй электрод вспомогательный. Вспомогательный электрод должен иметь постоянный потенциал [2].

Для определения концентрации в исследуемый раствор погружают один или оба электрода, затем, по наступлении равновесия, определяют значение электродного потенциала, после чего вычисляют концентрацию определяемого иона в растворе.

К недостаткам потенциометрического способа относится то, что для каждого вида ионов, концентрацию которых предполагается определить, нужно подобрать индикаторный электрод из специального материала, чувствительного к данному виду ионов, что электрод сравнения имеет сложное устройство и для его изготовления требуется использование драгоценных металлов, таких как серебро, ртуть и т.д.

Техническим результатом предлагаемого способа является упрощение той части измерительного устройства, которая непосредственно контактирует с исследуемым раствором; это упрощение заключается в исключении гальванического элемента из состава измерительного устройства, используемого в потенциометрическом способе. Результат достигается тем, что измерения проводят в ячейке из диэлектрического материала, в которую помещают коаксиальные цилиндрические электроды из инертного материала по отношению к раствору (например, из графита), между которыми исследуемый раствор приводят во вращательное движение; затем потенциометром измеряют разность потенциалов, возникающую между этими электродами.

Отличием заявляемого способа от прототипа является то, что в прототипе измеряется разность потенциалов, возникающая между электродом сравнения и индикаторным электродом в результате обмена ионами между индикаторным электродом и раствором, а в предлагаемом способе измеряется разность потенциалов, возникающая при вращении раствора между коаксиальными цилиндрическими электродами. Возникновение разности потенциалов между электродами, при вращательном движении раствора, связано с действием различных центробежных сил на ионы с разными эффективными массами.

Для пояснения сути изобретения служат фигуры 1 и 2.

На фигуре 1 изображен схематический разрез ячейки для реализации предлагаемого способа. На фигуре 2 приведены экспериментальные зависимости разности потенциалов от концентрации хлорида натрия в дистиллированной воде при двух значениях частоты вращения винта.

Для выполнения измерений была собрана ячейка, включающая стеклянный сосуд 1 с цилиндрическими электродами разных диаметров; электрод большого диаметра 2; раствор 3; винт 4; вал-привод 5; электродвигатель 6; электрод малого диаметра 7; регистрирующий прибор 8.

Методика выполнения измерений заключалась в следующем. Ячейку с электродами 2 и 7 промывали дистиллированной водой. После промывки в ячейку заливали порцию исследуемого раствора 3 с заданной концентрацией ионов. В опытах использовали раствор хлорида натрия в дистиллированной воде. Затем включали двигатель постоянного тока 6, для вращения раствора с помощью винта 4, соединенного с двигателем через вал-привод 5. Частоту вращения в ходе экспериментов варьировали от 2 до 3 оборотов в секунду путем регулирования тока питания двигателя. Измерения разности потенциалов между электродами 2 и 7 проводили после установившегося вращательного движения раствора 3 (через время порядка 10 секунд после включения двигателя). Результаты измерений при двух значениях частоты вращения раствора (при n1=2 об/с и n2=3 об/с) приведены на фигуре 2. Графики, приведенные на фигуре 2, соответствуют различным значениям шага изменения концентрации раствора. На фигуре 2.1 приведены зависимости разности потенциалов от концентрации хлорида натрия, когда последняя изменяется в интервале значений от 0 до 1 г/л. На фигуре 2.2 приведены зависимости разности потенциалов от концентрации ионов, когда концентрация изменяется в интервале значений от 1 до 10 г/л. На фигуре 2.3 - когда концентрация изменяется в интервале от 10 до 370 г/л.

Во всех случаях верхние графики соответствуют частоте вращения раствора n=3 об/с, а нижние графики получены при частоте вращения раствора n=2 об/с.

Как видно из графиков, в интервале значений концентраций раствора от 0 до 10 г/л зависимость разности потенциалов при постоянной скорости вращательного движения линейная. При дальнейшем увеличении концентрации рост разности потенциалов замедляется и достигает насыщения.

Реализация предложенного способа позволит получить простые измерительные устройства для экспресс-анализа растворов электролитов (воды) непосредственно в трубопроводах, технологических емкостях и водных объектах.

Источники информации

1. Физико-химические методы анализа Практическое руководство: Учебное пособие для вузов. / В.Б.Алесковский и др.; Под ред. В.Б.Алесковского - Л.: Химии, 1988. - 271 с.

2. Цитович И.К. Курс аналитической химии. - М.: Высш. шк., 1985. - 345 с.

Способ определения концентрации ионов в жидких растворах электролитов, находящихся в ячейке из диэлектрического материала, заключающийся в измерении разности потенциалов между электродами, погруженными в раствор электролита, отличающийся тем, что в ячейку помещают коаксиальные цилиндрические электроды одинаковой природы, и раствор электролита приводят во вращательное движение между электродами с частотой вращения 2-3 об/с, затем измеряют разность потенциалов между электродами, по величине которой определяют концентрацию ионов в растворе.



 

Похожие патенты:

Изобретение относится к анализаторам состава жидких сред с применением ионселективного индикаторного электрода. .

Изобретение относится к измерительной технике, а именно к измерению активности ионов водорода (показателя рН) в жидких средах, преимущественно с низкой удельной электрической проводимостью.

Изобретение относится к области аналитической химии. .

Изобретение относится к сельскому хозяйству, в частности к плодоводству. .

Изобретение относится к измерительной технике, к измерению концентрации ионов водорода (рН). .

Изобретение относится к методам изготовления высокочувствительных иономерных сенсоров с электропроводящей полимерной пленкой в качестве чувствительного элемента.

Изобретение относится к способу и устройству для контроля опорной полуячейки. .

Изобретение относится к технике анализа состава газовых смесей и может быть использовано для определения количественного содержания различных газов в многокомпонентных газовых смесях.

Изобретение относится к способам анализа и контроля концентрации ионов в различных средах и устройствам для этого и может быть использовано, например, в пищевой промышленности для определения превышения предельно допустимого количества нитратов в продуктах

Изобретение относится к способу для электрохимического обнаружения исследуемого вещества

Изобретение относится к измерительной системе для выполнения анализа жидкости организма

Изобретение относится к способу определения пассивирующих свойств смеси (11), содержащей по меньшей мере два компонента, которыми являются цемент и вода

Изобретение относится к устройствам для анализа биологической текучей среды

Изобретение относится к измерительной технике, в частности к измерению концентрации ионов водорода

Изобретение относится к измерению концентрации золота в цианистых растворах и пульпах

Изобретение относится к ферментному электроду, включающему частицы углерода, несущие глюкозодегидрогеназу (GDH) с флавинадениндинуклеотидом (FAD) в качестве кофермента; и электродный слой, контактирующий с указанными частицами углерода, причем частицы углерода и электродный слой состоят из частиц углерода с диаметром частицы не более 100 нм и удельной поверхностью по меньшей мере 200 м2 /г
Наверх