Способ обнаружения протечек на дне резервуара

Изобретение относится к средствам испытаний на герметичность днищ крупногабаритных резервуаров, в частности, на АЭС. Изобретение направлено на создание недорогого и простого в эксплуатации способа, не требующего задействования наружной поверхности днища, не влияющего на коррозионную стойкость материала резервуара и не требующего освобождения резервуара от жидкости. Этот результат обеспечивается за счет того, что засыпают порошкообразное индикаторное вещество, состоящее из дискретных частиц, в жидкость резервуара в области контролируемого участка. При этом размер дискретных частиц выбирают из условия обеспечения нахождения их во взвешенном состоянии в течение заданного времени до квазиравномерного погружения на дно бассейна. О точном расположении дефекта судят по исчезновению порошка на участке, окруженном осевшим индикаторным веществом. Для сосуда из нержавеющей стали в качестве индикаторного вещества может быть использован измельченный мел. Наблюдение можно осуществлять с помощью эндоскопа или подводной видеоаппаратуры. В том и другом случае желательно использовать подсветку. 3 з.п. ф-лы.

 

Изобретение относится к методике испытаний резервуаров на герметичность днищ крупногабаритных резервуаров, преимущественно из нержавеющей стали с односторонним доступом, в частности, на АЭС.

Проблема заключается в том, что такую процедуру необходимо производить оперативно и без опорожнения бассейна. Протечки могут возникнуть как за счет усталостных деформаций, так и за счет механических деформаций, например, за счет случайного падения объектов в бассейн. При этом, как правило, эти протечки очень малы и требуют использования индикаторов протечек.

Известен способ с использованием индикаторов-красителей по авторскому свидетельству СССР № 1439427 от 14.04 87 МПК G01M 03/04. Согласно этому способу к наружной стороне днища контролируемого резервуара, предварительно освобожденного от рабочей жидкости, организуют поступление под некоторым статическим напором раствора марганцево-кислого калия, и местоположение течей обнаруживают по проникновению контрольной жидкости через днище в его внутренний объем.

Как следует из описания, необходимы достаточно сложные подготовительные операции, предшествующие непосредственному выявлению протечек, что является недостатком данного способа.

В качестве прототипа выбран способ по а.с. СССР № 1582813 от 04.10.88, МПК G01M 03/20. Согласно этому способу на внутреннюю поверхность днища наносят слой порошкообразного индикаторного состава, в качестве которого используют смесь дискретных частиц мела, кальцинированной соды и метилового оранжевого, а снаружи подают контрольную жидкость, в качестве которой используют слабый раствор азотной кислоты. При наличии сквозных дефектов контрольная жидкость взаимодействует с индикаторным составом с образованием яркоокрашенных пенистых шапок над дефектом.

Недостатком указанного способа обнаружения протечек являются, во-первых, необходимость обеспечения доступа к наружной части днища, т.е. к пространству между резервуаром и облицованной стенкой каньона, в который он установлен, и, во-вторых, средства для введения в это пространство контрольной жидкости. Кроме того, как следует из описания, нанесение индикаторного состава на внутреннюю поверхность днища производится в резервуаре, освобожденном от жидкости.

Задачей настоящего изобретения является создание недорогого и простого в эксплуатации способа, не требующего задействования наружной поверхности днища и не влияющего на коррозионную стойкость материала резервуара, а самое главное, не требующего освобождения бассейна от жидкости, т.е. без выведения его из эксплуатации.

Поставленная задача достигается тем, что в способе обнаружения протечек на дне резервуара, заключающемся в использовании порошкообразного индикаторного вещества, состоящего из дискретных частиц, согласно изобретению, индикаторное вещество засыпают в жидкость резервуара в области контролируемого участка, при этом размер дискретных частиц выбирают из условия обеспечения нахождения их во взвешенном состоянии в течение заданного времени до квазиравномерного погружения на дно резервуара, и о точном расположении дефекта судят по исчезновению порошка на участке, окруженном осевшим индикаторным веществом.

Техническая сущность состоит в засасывании индикаторного вещества в дефект, вызывающий течь, оставляя свободным от него небольшой, но достаточно заметный участок, окруженный осевшими частицами, отличными по цвету и светоотражению от нержавеющей стали резервуара. Размер частиц не позволяет им опускаться слишком быстро, и они воспринимают движение жидкости в месте течи до своего оседания на дно.

В качестве порошкообразного индикаторного вещества для резервуара из нержавеющей стали выбирают чистый измельченный мел.

Кроме того, поиск дефекта можно осуществлять как визуально с помощью эндоскопа, так и с помощью видеокамеры, используя в том и другом случае подсветку.

На практике для реализации способа использовали обычный зубной порошок, хотя для максимального эффекта степень измельчения мела может быть подобрана экспериментально. Манипуляции производились без освобождения бассейна от рабочей жидкости и раздельно на каждом из контролируемых участков. Как указывалось выше, место протечки определялось как визуально с использованием средства наблюдения, например эндоскопа, и подсветки, так и с помощью подводной видеокамеры, также с подсветкой. Во втором случае производилась математическая обработка изображения с целью точной локализации места протечки. За счет того что вблизи дефекта из-за течи скорость движения жидкости максимальна, плавно оседающее индикаторное вещество как бы «сдувается» потоком истекающей жидкости, не успев опуститься на дно именно в зоне нахождения дефекта. На некотором небольшом удалении осаждение происходит более или менее равномерно. Поэтому дефект хорошо просматривается особенно с использованием аппаратуры видеоконтроля (видеокамеры), осуществляющей поиск контрастных участков на квазиравномерном фоне. На данный эффект не оказывают воздействия перемещения жидкости в самом бассейне, например приток жидкости в бассейн, т.к. это приводит всего лишь к плавной неравномерности осевшего индикаторного вещества, в то время как истечение жидкости через дефект вызывает хорошо заметную резкую неравномерность.

Заявляемый способ применим для оперативного поиска протечек на дне бассейна, предназначенного для хранения ампул с отработавшим ядерным топливом на АЭС, причем, как в случае загруженного бассейна, так и без размещения ампул в нем.

1. Способ обнаружения протечек на дне резервуара, заключающийся в использовании порошкообразного индикаторного вещества, состоящего из дискретных частиц, отличающийся тем, что индикаторное вещество засыпают в жидкость резервуара в области контролируемого участка, при этом размер дискретных частиц выбирают из условия обеспечения нахождения их во взвешенном состоянии в течение заданного времени до квазиравномерного погружения на дно бассейна и о точном расположении дефекта судят по исчезновению порошка на участке, окруженном осевшим индикаторным веществом.

2. Способ обнаружения протечек на дне резервуара по п.1, отличающийся тем, что в качестве порошкообразного индикаторного вещества для резервуара из нержавеющей стали выбирают чистый измельченный мел.

3. Способ обнаружения протечек на дне резервуара по п.1, отличающийся тем, что поиск дефекта осуществляют визуально с помощью эндоскопа и подсветки.

4. Способ обнаружения протечек на дне резервуара по п.1, отличающийся тем, что поиск дефекта осуществляют с помощью видеокамеры и подсветки.



 

Похожие патенты:

Изобретение относится к высокоэффективной жидкой среде с распределенными наночастицами для охлаждения ядерного реактора в качестве основного материала, с которым смешаны наночастицы, к способу и устройству для изготовления жидкой среды и к способу обнаружения утечки жидкой среды.

Изобретение относится к области испытательной техники и предназначено для контроля герметичности полых изделий, например роликов ленточных конвейеров. .

Изобретение относится к области поиска течей в изделиях, имеющих свободный объем, который перед герметизацией заполняется гелием. .

Изобретение относится к испытательной технике, а именно к контролю герметичности с помощью индикаторных составов, и может быть использовано в машиностроении для пневматического контроля герметичности сосудов и систем и для обнаружения утечки газов из систем, находящихся под давлением.

Изобретение относится к контролю герметичности изделий и позволяет расширить эксплуатационные возможности путем обеспечения контроля изделий, не имеющих доступа к внутренней поверхности.

Изобретение относится к средствам для испытания фильтров и может найти применение в любых отраслях промышленности, где они используются

Изобретение относится к области неразрушающего контроля и предназначено для использования в диагностике состояния механизмов и машин, испытывающих статические и динамические нагрузки и требующих повышенных мер контроля и обеспечения безопасности, например, погрузо-разгрузочных строительных машин (башенных кранов)

Изобретение относится к устройствам-течеискателям. Сущность: устройство содержит щуп (10), соединенный посредством шланга (11) через дроссель (D2) с вакуумным насосом (16), и датчик тестового газа (15). Выше по потоку от дросселя (D2) выполнена точка распределения (24). От точки распределения (24) к датчику (15) тестового газа ведет отвод (25). При этом дроссель (D2) выполнен в виде диафрагмы с круглым отверстием. Проводимость диафрагмы подобрана таким образом, что падение давления на диафрагме больше , где - промежуточное давление в точке распределения (24). Технический результат: создание течеискателя для работы методом щупа, на чувствительность обнаружения которого не оказывают влияние колебания скорости откачки вакуумного насоса. 4 з.п.ф-лы, 5 ил.

Изобретение относится к области исследований устройство на герметичность и может быть использовано для функциональной проверки течеискателя (20). Сущность: течеискатель (20) содержит датчик (21) парциального давления, входное отверстие (24) которого является входным отверстием течеискателя (20), камеру (22) обнаружения с селективно проницаемым для тестового газа окном (23). В камере (22) обнаружения размещен датчик давления для выдачи индикации, соответствующей парциальному давлению тестового газа. К течеискателю (20) подключают испытательное устройство (30), имеющее пространство (33) и изменяемым объемом и шкалу для наблюдения за размером этого пространства. Изменяя размер пространства (33) испытательного устройства (30), изменяют парциальное давление содержащегося в атмосферном воздухе тестового газа у входного отверстия (24) датчика (21) парциального давления. Проверяют, показывает ли течеискатель (20) изменение парциального давления. Технический результат: упрощение функциональной проверки течеискателя, снижение трудозатрат и затрат времени. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области испытания устройств на герметичность. Сущность: устройство включает в себя: масс-спектрометрическую трубку (2), выполненную с возможностью обнаружения газа для поиска утечки, и турбомолекулярный насос (3). Турбомолекулярный насос (3) имеет множество ступеней роторов (33) и статоров (34), поочередно размещенных в корпусе (31), причем роторы (33) прикреплены к вращающемуся валу (32). Кроме того, турбомолекулярный насос (3) включает в себя источник (35) привода, выполненный с возможностью приведения во вращение вращающегося вала (32). Впускное отверстие (36), сообщающееся с испытательным образцом (TP), и соединительное отверстие (37), с которым соединена масс-спектрометрическая трубка (2), отстоят друг от друга на поверхности (31а) стенки корпуса (31). Причем поверхность (31а) стенки обращена к ротору (33а) самой верхней ступени. Обнаружение утечки выполняется, побуждая газ для поиска утечки входить в масс-спектрометрическую трубку (2) изнутри испытательного образца (ТР). Технический результат: повышение чувствительности и оперативности при обнаружении утечки. 4 ил.

Использование: для отделения определенных газов от других газов и установления наличия интересующих газов. Сущность изобретения заключается в том, что тело мембраны образовано первой пластиной и второй пластиной. Вторая пластина имеет тонкий слой, обладающий селективной газопроницаемостью. В зоне нахождения окошек этот слой обнажен. В этих местах поддержка обеспечена пористым донышком в первой пластине или узкими отверстиями во второй пластине. Мембрана содержит нагреватель, обеспечивающий нагрев окошек излучением. Технический результат: упрощение конструкции и простота изготовления мембраны. 3 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для проверки герметичности устройства, содержащего конденсируемый газ, прежде всего хладагент. Сущность: отсасывают газ (15) из окружающей устройство (10) среды. Направляют упомянутый газ (15) через адсорбер (22). Активируют адсорбер (22) для десорбции накопившегося на нем газа. Направляют десорбированный газ посредством высоковакуумного насоса (32) к газовому счетчику (30) для селективного распознавания. При этом десорбция происходит непосредственно в вакуум, создаваемый высоковакуумным насосом (32). Технический результат: повышение надежности контроля, обеспечение простоты конструкции. 2 н. и 8 з.п. ф-лы, 1 ил.

Изобретение относится к области исследований на герметичность. Сущность: течеискатель имеет испытательное впускное отверстие (10) для соединения проходящей испытание тестовой камеры. Высоковакуумный насос (12) создает в детекторе (11) тестового газа высокий вакуум. Форвакуумный насос (20) содержит две насосные ступени (22, 23). Для откачки тестовой камеры насосные ступени (22, 23) приводятся в действие параллельно, причем их скорости откачки складываются. После достижения необходимого вакуума насосные ступени (22, 23) приводятся в действие последовательно для создания в детекторе (11) тестового газа необходимого высокого вакуума. Технический результат: создание течеискателя с возможностью упрощенного переключения между режимами откачки и детектирования. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области оптических методов контроля и касается устройства для проведения течеискания в нескольких точках контроля. Устройство включает в себя несколько измерительных ячеек для оптического обнаружения пробного газа, каждая из которых имеет средство возбуждения для перевода пробного газа в метастабильное состояние, источник излучения и приемник излучения, а также базовый блок, соединенный с измерительными ячейками с помощью оптических волокон. Базовый блок включает в себя перестраиваемый по частоте лазер и фотодетектор. Лазер приводится в действие посредством двухтональной частотной модуляции (ДТЧМ) путем генерации для испускаемого лазерного излучения, боковых полос (ω0-ω1)±1/2Ω и (ω0+ω1)±1/2Ω, где ω0 - центральная частота лазера, ω1 - первая частота модуляции, которая больше или равна 1 ГГц, a Ω - вторая частота модуляции, которая меньше или равна 10 МГц. Технический результат заключается в обеспечении возможности обнаружения утечек в нескольких точках контроля и в повышении чувствительности устройства. 2 з.п. ф-лы, 6 ил.
Наверх