Способ извлечения тонкого золота при обогащении золотосодержащих песков россыпных месторождений

Изобретение относится к обогащению полезных ископаемых и может быть использовано при обогащении труднообогатимого золотосодержащего сырья, содержащего тонкое «плавучее» золото. Способ включает классификацию золотосодержащего материала, обработку его реагентом, перемешивание и отделение золота на обогатительном аппарате. В качестве реагента используют полифосфат натрия в количестве 300 г/т. Для регулирования рН среды в интервале 6-7 добавляют карбонат натрия Nа2СО3 в количестве от 10 до 15 г/т, при этом обработка реагентом проводится на второй стадии центробежной концентрации в течение 40 мин с последующим отделением золота на обогатительном аппарате. Технический результат - повышение извлечения тонкого золота, снижение затрат на реагентную обработку материала. 2 ил.

 

Изобретение относится к обогащению полезных ископаемых и может быть использовано при обогащении труднообогатимого золотосодержащего сырья, содержащего тонкое «плавучее» золото.

Известен способ извлечения золота с помощью получения флокул, содержащих мелкое золото, суть которого заключается в обработке золотосодержащего материала высокомолекулярным радиационным полиакриламидом [1].

Недостатком данного способа является необходимость предварительной длительной дезинтеграции и классификации. Кроме того, образовавшиеся флокулы под действием гидродинамических сил, действующих в обогатительных аппаратах, могут быть разрушены, что резко снижает эффективность извлечения золота, платины; отсутствует селективность образования флокул, содержащих золото, платину.

Известен способ извлечения золота, основанный на изменении поверхностно-активных свойств частиц золота солями металлов жирных кислот. Гидрофобная поверхность частиц золота покрывается масляной пленкой. Такие олефиновые частицы агломерируются в более крупные скопления, которые извлекаются флотацией или классификацией. Агломерированный продукт подвергают обжигу, а полученную в результате обжига смолу - плавке [2].

Недостатками данного способа является многостадийность процесса извлечения, необходимость разрушения агломератов путем обжига.

Наиболее близким к предлагаемому способу является способ выделения тонкодисперсных металлов из минеральных продуктов, основанный на предварительной обработке золотосодержащей суспензии йодом при рН среды 8-11 с получением фазы, содержащей укрупненный металл, и отделением ее от суспензии.

Недостатками данного способа являются применение дорогостоящего и высокоопасного (класс опасности - 2) реагента - йода [3].

Техническим результатом является повышение извлечения тонкого золота при обогащении золотосодержащих песков россыпных месторождений, снижение затрат на реагентную обработку материала, снижение агрессивного воздействия среды.

Технический результат достигается тем, что в способе извлечения тонкого золота при обогащении золотосодержащих песков россыпных месторождений, включающем классификацию золотосодержащего материала, обработку его реагентом, перемешивание и отделение золота на обогатительном аппарате, в качестве реагента используют полифосфат натрия в количестве 300 г/т; для регулирования рН среды в интервале 6-7 добавляют карбонат натрия Na2CO3 в количестве от 10 до 15 г/т, при этом обработка реагентом проводится на второй стадии центробежной концентрации в течение 40 мин с последующим отделением золота на обогатительном аппарате.

Введение в водную суспензию золотосодержащего материала полифосфата натрия с последующим гидроциклонированием и отделением золота на обогатительном аппарате повышает эффективность извлечения тонкого золота. При реагентной обработке материала наблюдается пептизация шламов, при этом за счет процессов комплексообразования появляются хелатные комплексы со «скрытым» золотом, а поверхностный слой тонкого «плавучего» золота становится гидрофильным, в результате повышается выход золота в концентрат.

Полифосфат натрия (NaPO3)n Na2O малотоксичен, ПДК составляет 3,5 мг/дм3 по (РO43-) с лимитирующим показателем вредности по органическому признаку, т.е. применяемый реагент нетоксичен и биологически разлагаем.

Способ не требует специального обогатительного оборудования и может осуществляться в технологическом процессе любого золотодобывающего предприятия.

На фиг.1 - схема обогащения золотосодержащего материала с использованием гидроциклона с предварительной обработкой материала реагентом; на фиг.2 - технологические показатели сравнительных данных массовой доли выхода концентрата по отношению к исходной массе материала (%) и извлечения золота из концентрата (%): 1 - схема обогащения без реагентной обработки; 2 - схема обогащения с обработкой содово-галогенидной смесью в гидроциклоне; 3 - схема обогащения с обработкой гексаполифосфатом в гидроциклоне.

Реализация способа осуществлялась следующим образом.

Золотосодержащий материал подвергался классификации на классы крупности -40+10 мм, -10+7 мм, -7+2 мм, -2+0,071 мм и -0,071 мм. Дальнейшие исследования проводились на материале класса крупности -0,071 мм. Навеска материала массой 3 кг поступала на первую стадию центробежной концентрации в лабораторном гидроциклоне. Песковая фракция поступала на концентрационный стол СКО-0,5. Водная суспензия направлялась на вторую стадию центробежной концентрации с одновременной реагентной обработкой реагентом в течение 40 мин с последующей доводкой материала на концентрационном столе, при этом в качестве реагента использовалась в первой серии эксперимента содово-галогенидная смесь (йод - 300 г/т, карбонат натрия Na2CO3 - 10-15 г/т). Во второй серии использовался полифосфат натрия (300 г/т), а для регулирования рН среды в интервале 6-7 добавлялся карбонат натрия Na2CO3 в количестве от 10 до 15 г/т. Для сравнения 3 кг аналогичной пробы обрабатывалось по такой же схеме без предварительной обработки реагентами. Полученные концентраты анализировались на содержание золота. Извлечение золота в концентрат в пробах, обработанных реагентом, повышалось по сравнению со способом без обработки реагентом от 2 до 2,2 раза. Обработка полифосфатом натрия позволяет уменьшить потери тонкого золота на 10% по сравнению с вариантом схемы с обработкой шламов содово-галогенидной смесью.

Способ повышает эффективность извлечения золота от 2 до 2,2 раза. Реализация данного способа может быть проведена на стандартном оборудовании, не требует больших дополнительных затрат, является экологически безопасным и экономически выгодным.

Источники информации

1. Ковалев А.А., Мязин В.П., Карасев К.И. Состав для флокуляции мелкого золота и платины. Патент №1427680, 1994.

2. Поколова Ю.В., Грабовский А.И. Активированные углеродные сорбенты для извлечения благородных металлов // Цветная металлургия - 1999, №5, с.58-60.

3. Колтун Л.Г., Костылев Д.С., Ятлукова Н.Г. Способ выделения тонкодисперсных металлов. Патент РФ №2130499.

Способ извлечения тонкого золота при обогащении золотосодержащих песков россыпных месторождений, включающий классификацию золотосодержащего материала, обработку его реагентом, перемешивание и отделение золота на обогатительном аппарате, отличающийся тем, что в качестве реагента используют полифосфат натрия в количестве 300 г/т; для регулирования рН среды в интервале 6-7 добавляют карбонат натрия Na2СО3 в количестве от 10 до 15 г/т, при этом обработка реагентом проводится на второй стадии центробежной концентрации в течение 40 мин с последующим отделением золота на обогатительном аппарате.



 

Похожие патенты:
Изобретение относится к способу рафинирования серебряно-золотых сплавов от селена, теллура, меди и свинца. .
Изобретение относится к способам извлечения благородных металлов и может быть использовано для извлечения благородных металлов из минерального сырья, содержащего хлориды щелочных и щелочно-земельных металлов, например шламов калийного производства.

Изобретение относится к способу разделения и извлечения благородных металлов. .
Изобретение относится к области металлургии благородных металлов и может быть использовано для промышленного извлечения золота. .
Изобретение относится к способу приготовления водного раствора реагентов для выщелачивания золота из руд и концентратов. .

Изобретение относится к области гидрометаллургии благородных металлов и может быть использовано для извлечения золота из медистых руд методом кучного выщелачивания.
Изобретение относится к цветной металлургии, а именно к производству платиновых и благородных металлов. .
Изобретение относится к способу получения золота из сульфидных золотосодержащих измельченных руд после их вскрытия бактериальным выщелачиванием, или окисленным обжигом, или автоклавным окислением.

Изобретение относится к способу раздельного извлечения золота и серебра из тиоцианатных растворов. .
Изобретение относится к способам получения коллективного концентрата обогащения для извлечения благородных металлов из глинисто-солевых отходов (шламов) предприятий, перерабатывающих калийно-магниевые руды и каменную соль способами пиро- и гидрометаллургического передела.
Изобретение относится к области обогащения полезных ископаемых, в частности к обогащению алмазосодержащих руд, и может быть использовано при переработке других видов рудного и нерудного сырья.
Изобретение относится к способам получения коллективного концентрата обогащения для извлечения благородных металлов из глинисто-солевых отходов (шламов) предприятий, перерабатывающих калийно-магниевые руды и каменную соль способами пиро- и гидрометаллургического передела.

Изобретение относится к области охраны окружающей среды, а именно к устройствам для водяной сортировки бытовых отходов. .

Изобретение относится к технологии и устройствам для разделения твердых полидисперсных материалов по граничной крупности частиц в жидкой среде и может быть использовано в горнодобывающей, химической, металлургической и других отраслях промышленности, также в производстве строительных материалов.

Изобретение относится к области черной металлургии, а именно к переработке металлургических шлаков, используемых в стройиндустрии, в частности в дорожном строительстве, в бетонных работах и др., к получению или обогащению магнитного железосодержащего продукта, используемого в доменной плавке для замены железорудного сырья, в выплавке стали и при производстве агломерата.

Изобретение относится к горнодобывающей промышленности и может быть использовано для извлечения ценных элементов из руд и продуктов их переработки, в частности для извлечения сульфидов меди, никеля, железа и благородных металлов из лежалых хвостов законсервированного хвостохранилища.

Изобретение относится к области охраны окружающей среды и может быть использовано для утилизации отработанных и дефектных люминесцентных ламп. .

Изобретение относится к области удаления и переработки продуктов сгорания и может быть использовано на тепловых электростанциях, работающих на каменноугольных топливах.

Изобретение относится к коммунальному хозяйству, а именно к оборудованию для мусороперерабатывающих заводов, и может быть использовано при сортировке многокомпонентных смесей (МС), преимущественно твердых бытовых отходов (ТБО), а также может быть использовано при переработке плодов бахчевых культур на семена.

Изобретение относится к области обогащения полезных ископаемых. .
Наверх