Способ твердого анодирования изделий из алюминиевых сплавов

Изобретение относится к электрохимической обработке изделий из алюминиевых сплавов и может быть использовано в авиационной, космической, автомобильной промышленности, а также для строительных и архитектурных сооружений, в пневматических системах управления, силовой энергетике и других объектах современной техники. Способ включает обработку изделий при постоянном токе в водном растворе электролита, содержащего, г/л: серную кислоту 70-140, щавелевую кислоту 30-80, винную кислоту 5-20, лимонную кислоту 2-15 и борную кислоту 1-5, при этом обработку ведут при температуре электролита 18-25°С ступенчато: первую ступень осуществляют при напряжении 5-10 В, 0,5-5,0 минут, вторую ступень осуществляют при напряжении 15-28 В до образования покрытия требуемой толщины. Технический результат: повышение коррозионной стойкости, твердости, скорости роста пленки, обеспечение возможности ее окрашивания в различные цвета. 2 табл.

 

Изобретение относится к электрохимической обработке поверхности алюминиевых сплавов и может быть использовано для авиационной, космической, автомобильной промышленности, а также для строительных и архитектурных сооружений, в пневматических системах управления, силовой энергетике и других объектах современной техники.

Известны способы анодирования в 15-35% растворе серной кислоты. Они обычно проводятся при достаточно низких температурах (около -5 до +5°С) и высоких плотностях тока (2,5-15 А/дм2). В процессе анодирования существенно увеличивается напряжение - от 40 до 100 В (В.Ф.Хенли. Анодное оксидирование алюминия и его сплавов. М., Металлургия, 1986, стр.70).

Такие способы твердого анодирования используются для создания износостойких покрытий на редукторах, деталях шасси самолетов и других аналогичных объектах. Однако размеры ванн для анодирования с такими параметрами малы и это сдерживает применение твердого анодирования для изделий современной техники.

Известен способ твердого анодирования, при котором в раствор серной кислоты добавляют органические соединения на основе лигнина.

Нанесение твердой анодно-оксидной пленки осуществляют из раствора, содержащего, г/л:

Серная кислота 60-350
Лигнин,
лигносульфоновая кислота,
лигносульфонатные
соли (лигносульфонат
натрия, лигносульфонат
аммония) 0,5-5,0

при температуре 0-10°С, напряжении до 98 В.

(Патент США №4270991, C25D 11/08, C25D 11/10, 1981 г.).

К недостаткам этого способа относятся низкая температура и высокое напряжение. Такое сочетание уменьшает коррозионную стойкость в открытой атмосфере и создает условия для формирования оксидной пленки темно-серых тонов, что делает невозможным дальнейшее окрашивание пленки с целью обеспечения высокой декоративности.

Наиболее близким по технической сущности и назначению к предлагаемому является способ, осуществляемый в растворе, содержащем, г/л:

Сульфат алюминия 200-250
Винная кислота 110-140
Щавелевая кислота 60-90
Триэтаноламин, мл/л 40-60

при температуре 5-40°С, напряжении - 20-40 В, плотности тока - 1,5-3,0 А/дм2.

(P.G.Sheasby, R.Pinner. The Surface Treatment and Finishing of Aluminium and its Alloys. Finishing Publications Ltd, Trowbridge, UK, Sixth edition, V.2, 2001, p.768), прототип.

К недостаткам этого способа относятся пониженная твердость и коррозионная стойкость, ограниченная декоративность, поскольку, как и в выше приведенном примере, в процессе анодирования поверхность темнеет и дальнейшее окрашивание покрытия не приводит к положительным результатам.

Кроме того, сточные воды загрязняются большим количеством сульфата алюминия, что требует дополнительных затрат на их очистку.

Предлагается способ твердого анодирования изделий из алюминиевых сплавов, включающий обработку изделий при постоянном токе, осуществляемый в растворе электролита, при следующем содержании в нем компонентов (г/л):

Серная кислота 70-140
Щавелевая кислота 30-80
Винная кислота 5-20
Лимонная кислота 2-15
Борная кислота 1-5

при этом обработку при постоянном токе ведут при температуре 18-25°С ступенчато: первую ступень осуществляют при напряжении 5-10 В, 0,5-5 мин; вторую ступень - при напряжении 15-28 В до образования покрытий требуемой толщины.

Предлагаемый способ твердого анодирования изделий из алюминиевых сплавов отличается от прототипа тем, что электролит дополнительно содержит лимонную, борную и серную кислоты при следующем соотношении компонентов (г/л):

Серная кислота 70-140
Щавелевая кислота 30-80
Винная кислота 5-20
Лимонная кислота 2-15
Борная кислота 1-5

при этом обработку при постоянном токе ведут при температуре 18-25°С ступенчато: первую ступень осуществляют при напряжении 5-10 В, 0,5-5 мин; вторую ступень - при напряжении 15-28 В до образования покрытий требуемой толщины.

Технический результат - повышение коррозионной стойкости, твердости, скорости роста пленки, обеспечивая возможность ее окрашивания в различные цвета и, как следствие, увеличение срока службы изделий, производительность процесса анодирования и улучшение экологии.

Предлагаемый способ позволяет формировать кристаллическую γ-структуру получаемой пленки с размером кристаллов 50-70 нанометров, что обеспечивает повышение коррозионной стойкости и твердости. Состав и соотношение компонентов электролита при проведении процесса по предлагаемому режиму дает возможность получать бесцветную пленку, позволяющую окрашивать изделие в желаемый цвет. Кроме того, предлагаемый способ позволяет проводить анодирование на обычных линиях в крупногабаритных ваннах, обеспечивая анодирование крупных изделий.

Все это позволяет увеличить срок службы изделий, расширить сортамент получаемых изделий и, исключая слив вредных составляющих электролита, улучшить экологию окружающей среды.

Пример осуществления

Испытания предлагаемого способа проводили на профилях толщиной 3 мм алюминиевого сплава АД31Т. Из них вырезали механическим фрезерованием образцы размером 100×50 мм. Перед анодированием их травили в растворе 5% NaOH, промывали, осветляли в 30% HNO3, промывали. Анодирование проводили при плотности тока 3 А/дм2. Напряжение для образцов, анодированных по предлагаемому способу, составляло 7 В, 2 мин + 22 В, 35 мин, температура 20°С. Также проводили испытания способа прототипа. Напряжение при анодировании в этом случае составляло 40 В, температура 35°С. Составы растворов приведены в табл.1. При одинаковой толщине анодно-оксидной пленки твердость ее по предлагаемому способу в среднем на 20%, а скорость роста на 30% выше, чем по прототипу (табл.2). Анодно-оксидная пленка, полученная по предлагаемому способу, практически не меняет исходного цвета алюминиевого сплава, она может окрашиваться электролитическими и адсорбционными способами более чем в 50 различных цветов. Пленка, полученная по способу-прототипу, не подвергается окрашиванию.

Коррозионная стойкость пленки, определенная в лабораторных условиях по ГОСТ 9.031-74, для предлагаемого способа соответствует принятой в стандартах классификации "совершенно стойкая". Для прототипа пленка классифицируется как "стойкая". Коррозионная стойкость ее в 5-10 раз меньше, чем пленки полученной по предлагаемому способу. Соответственно коррозионная долговечность по прогнозам, составленным на основе атмосферных испытаний в различных климатических зонах, для пленки, полученной предлагаемым способом в 5 раз выше, чем полученной по прототипу.

Такие же результаты получены на алюминиевых сплавах АМг2, АМг3, 1935.

Таблица 1
Использованные в примерах составы растворов
Содержание реактивов, г/л
Способ №№ Серная кислота Сульфат алюминия Щавелевая кислота Винная кислота Лимонная кислота Борная кислота Триэта-ноламин
1 2 3 4 5 6 7 8
Предлагаемый 1 80 - 40 6 11 4 -
По прототипу 2 - 220 60 120 - - 50
Таблица 2
Результаты определения характеристик на покрытии, полученном по предлагаемому способу и по прототипу на сплаве АД31Т
Способ №№ Толщина пленки, мкм Твердость, Hv кгс/мм2 Цвет пленки Количество цветов после окраски пленки Коррозионная стойкость Прогноз долговечнос-ти, годы
Балы % поражения
1 2 3 4 5 6 7 8 9
Предлагаемый 1 30 450 Бесцветная >50 10 0 50
По прототипу 2 30 370 Темно-серая 0 8 0,11-0,25 10

Таким образом, предлагаемый способ твердого анодирования на изделиях из алюминиевых сплавов позволяет:

- повысить коррозионную долговечность в открытой атмосфере в 4,5-5,5 раза;

- повысить твердость анодно-оксидной пленки на 20-30%;

- увеличить скорость роста пленки процесса анодирования на 30-40%;

- обеспечить окрашивание пленки в различные цвета (>50);

- улучшить экологию;

- обеспечить ведение нового процесса твердого анодирования на любом предприятии, освоившем обычное анодирование.

Все это позволяет увеличить срок службы в 3-5 раз, производительность на 20-25%.

Способ твердого анодирования изделий из алюминиевых сплавов, включающий обработку изделий при постоянном токе в растворе электролита, содержащего щавелевую и винную кислоты, отличающийся тем, что электролит дополнительно содержит лимонную, борную и серную кислоты при следующем соотношении компонентов, г/л:

серная кислота 70-140
щавелевая кислота 30-80
винная кислота 5-20
лимонная кислота 2-15
борная кислота 1-5,

при этом обработку при постоянном токе ведут при температуре электролита 18-25°С ступенчато - первую ступень осуществляют при напряжении 5-10 В, 0,5-5,0 мин, вторую ступень осуществляют при напряжении 15-28 В до образования покрытия требуемой толщины.



 

Похожие патенты:
Изобретение относится к гальванотехнике и может быть использовано для получения толстослойных оксидных покрытий при анодировании в электролитах, обеспечивающих образование электроизоляционного покрытия.
Изобретение относится к гелиотехнике и может быть использовано в солнечных коллекторах, применяемых для тепло- и хладоснабжения жилых и промышленных зданий и установок

Изобретение относится к области гальванотехники и может быть использовано при получении микроканальных структур для усиления пространственно-заряженных частиц в производстве элементов электронной техники

Изобретение относится к области гальванотехники и может быть использовано в судостроении и машиностроении, а также в производстве бытовой техники

Изобретение относится к способу получения пористой пленки с высокоупорядоченной системой пор, образующих строгую гексагональную решетку, а также к способу формирования высокоупорядоченных массивов анизотропных структур. В качестве исходного материала для осуществления способа получения пористой пленки с высокоупорядоченной системой пор, образующих строгую гексагональную решетку, путем анодного окисления алюминия используют монокристаллический алюминий с кристаллографической ориентацией А1 (111), А1(110). Способ формирования высокоупорядоченных массивов анизотропных наноструктур осуществляют путем электрохимического осаждения внедряемого вещества из соответствующих растворов электролитов в каналах пористой матрицы. В качестве матрицы используют пористую пленку, полученную вышеуказанным способом. Технический результат - повышение упорядоченности и однородности пористой структуры пленок анодного оксида алюминия, возможность получения высокоупорядоченных массивов анизотропных наноструктур на основе указанных пленок и расширение области практического применения пористых пленок анодного оксида алюминия и массивов наноструктур на его основе. 2 н. и 17 з.п. ф-лы, 1 табл., 11 ил., 4 пр.

Изобретение относится к способам получения оксидных катализаторов на металлическом носителе-подложке, которые могут быть использованы в реакциях окисления СО в СO2, имеющих место в высокотемпературных процессах очистки технологических и выхлопных газов, в частности в энергетике и автомобильной промышленности. Предлагаемый способ включает анодирование алюминиевой подложки в гальваностатическом режиме при плотности тока 10-15 мА/см2 в течение 20-60 мин в 3% водном растворе щавелевой кислоты С2Н2O4, промывание и сушку, после чего сформированный на алюминиевой подложке промежуточный пористый слой оксида алюминия обрабатывают нагретым до 35°С 1% раствором фосфорной кислоты, промывают, высушивают и наносят на обработанную алюминиевую подложку ультрадисперсный диоксид марганца, который образуется в результате пропитки 5% раствором перманганата калия КМnO4 с последующим отжигом на воздухе при 220-230°С в течение 10 мин, при этом операция нанесения диоксида марганца может быть проведена троекратно. Технический результат заключается в упрощении и удешевлении технологии при одновременном расширении круга композитных каталитических материалов, содержащих металлическую подложку с нанесенными оксидами переходных металлов. 1 з.п. ф-лы, 4 ил., 2 пр.

Изобретение относится к промышленной экологии и может быть использовано для утилизации жидких отходов гальванических производств. Способ утилизации отработанного раствора анодного оксидирования алюминия и его сплавов включает смешивание указанного раствора с реагентом, образование осадка и отделение его от раствора. Отработанный раствор анодного оксидирования алюминия и его сплавов содержит в качестве основных компонентов алюминий(+3), щавелевую кислоту и, необязательно, серную кислоту. В качестве реагента используют отход получения покрытий никелем - отработанный раствор никелирования. При этом могут быть использованы отработанные растворы химического никелирования, гальванического никелирования или их смеси. Изобретение позволяет утилизировать отработанные растворы с получением товарного продукта – дигидрата оксалата никеля и снизить затраты на охрану окружающей среды. 5 з.п. ф-лы, 8 пр.
Наверх