Двухрежимный ракетный двигатель твердого топлива

Двухрежимный ракетный двигатель твердого топлива содержит цилиндрический корпус, стартовую и маршевую камеры с пороховыми канальными зарядами, разделительное днище, устройство вскрытия днища и сопло. Устройство вскрытия днища выполнено в виде симметрично расположенных относительно продольной оси двигателя на разделительном днище сферических перфорированных заглушек, выгнутых в сторону маршевой камеры. Со стороны стартовой камеры заглушка взаимодействует с тонкостенной мембраной, повторяющей форму заглушки, герметично закрепленной по периферии на заглушке и имеющей теплозащитное покрытие. Заглушка расположена напротив канала порохового заряда маршевой камеры, а размер перфорации выбирается исходя из соотношений, защищаемых настоящим изобретением. Изобретение позволяет повысить надежность двухрежимного ракетного двигателя. 4 ил.

 

Изобретение относится к области ракетной техники, а именно к двухрежимным твердотопливным ракетным двигателям, и может быть использовано при создании ракет.

Известен двухрежимный ракетный двигатель твердого топлива (патент России №2187683, МПК F02K 9/30 от 17.05.2000 г.), содержащий корпус, размещенные в корпусе камеру сгорания с зарядом твердого топлива стартового режима и камеру сгорания с зарядом твердого топлива маршевого режима, размещенную между камерами сгорания перегородку, содержащую центральное отверстие и, по меньшей мере, одно запальное отверстие, сопловой блок, содержащий сверхзвуковое сопло стартового режима и, по меньшей мере, одно сверхзвуковое сопло маршевого режима.

В каждое запальное отверстие перегородки между камерами сгорания заключена металлическая заглушка, содержащая со стороны камеры сгорания маршевого режима инициирующий состав. Заглушка может быть выполнена в виде втулки с инициирующим составом, в виде штыря либо в виде металлической пластины.

Основным недостатком указанного выше двигателя является наличие газохода маршевого режима. Во-первых, газоход занимает значительный объем стартовой камеры, уменьшая массу стартового заряда, во-вторых, усложняет конструкцию, подвергаясь двухстороннему тепловому и эрозионному воздействию.

Наиболее близким по технической сущности и достигаемому положительному эффекту является двухрежимный ракетный двигатель твердого топлива (патент России №2272927, МПК F02K 9/28 от 30.07.2004 г.), содержащий корпус, последовательно установленные в нем, разделенные днищем заряды первого и второго режима, узлы инициирования, сопло.

Днище выполнено в виде эластичной мембраны, в центральной части которой с помощью программированного разрушаемого соединения закреплен эластичный рукав, размещенный в канале заряда второго режима.

Недостатком этого устройства является следующее.

Применение эластичного рукава для случая заряда второго режима сложной формы, например со щелевыми каналами, практически сложно осуществимо в связи с тем, что эластичный рукав на первом режиме работы двигателя, находясь под давлением, будет стремиться повторить форму заряда второго режима, а это может привести к разрушению рукава.

Целью изобретения является повышение надежности двигателя.

Поставленная цель достигается тем, что в двухрежимном ракетном двигателе твердого топлива, содержащем цилиндрический корпус, стартовую и маршевую камеры с пороховыми канальными зарядами, разделительное днище, устройство вскрытия днища, сопло, устройство вскрытия выполнено в виде симметрично расположенных относительно продольной оси двигателя на днище сферических перфорированных заглушек, выгнутых в сторону маршевой камеры, причем со стороны стартовой камеры заглушка взаимодействует с тонкостенной мембраной, повторяющей форму заглушки, герметично закрепленной по периферии на заглушке и имеющей теплозащитное покрытие, при этом заглушка расположена напротив канала порохового заряда маршевой камеры, а размер перфорации выбирается исходя из следующих соотношений:

nπR2≥2,5Sкр

2δ(τср)>Pкс·R·K,

где n - число перфораций в заглушках;

R - радиус перфорации;

Sкp - площадь критического сечения сопла;

δ - толщина мембраны;

τср - допустимое напряжение на срез материала мембраны;

Ркс - давление в стартовой камере;

К - коэффициент запаса прочности.

Изобретение поясняется чертежами, где на фиг.1 изображен общий вид устройства, на фиг.2 и 3 - взаимное расположение заглушек и щелевых каналов, на фиг.4 - конструкция заглушки.

Двигатель содержит корпус 1, камеру сгорания 2 с твердотопливным зарядом 3, обеспечивающим стартовый режим, камеру сгорания 4 с твердотопливным зарядом 5, обеспечивающим маршевый режим. В заряде 5 выполнены щелевые каналы 6 (фиг.2).

Камеры 2, 4 стартового и маршевого режимов разделены днищем 7. На днище напротив щелевых каналов 6 установлены перфорированные силовые заглушки 8, выгнутые в сторону маршевой камеры 4. На заглушках имеются перфорации 9 (фиг.4), выполненные радиусом R. Со стороны стартовой камеры 2 на силовой заглушке 8 (фиг.4), повторяя ее форму, расположена тонкостенная мембрана 10 с теплоизоляцией 11.

Для истечения продуктов сгорания стартовой и маршевой ступени используется одно сопло 12 с площадью критического сечения Sкр.

Двухрежимный ракетный двигатель твердого топлива работает следующим образом. Включение стартовой и маршевой ступени производится последовательно. При включении стартовой камеры давление продуктов сгорания стремится продавить тонкостенную мембрану через перфорацию, создавая максимальные напряжения в мембране по периметру перфорации.

Условия прочности мембраны, используя известные зависимости, можно записать следующим образом:

2δ(τср)>Pкс·R·K,

где δ - толщина мембраны;

ср) - допустимое напряжение на срез материала мембраны;

Ркс - давление в стартовой камере;

R - радиус перфорации;

К - коэффициент запаса прочности.

Таким образом, при работе стартовой камеры для предотвращения вскрытия мембраны расчетной принимается нагрузка от воздействия давления на локальный участок мембраны, соответствующий площади одной перфорации.

Это обстоятельство допускает применить для герметизации тонкостенную мембрану.

При включении маршевой камеры продукты сгорания, проникая через перфорации, воздействуют на мембрану по всей ее площади, вскрывают ее и, проникая в стартовую камеру, истекают через сопло.

Здесь следует отметить два обстоятельства. Для обеспечения стабильности выхода маршевой камеры на режим вскрытие мембран должно происходить одновременно. Это условие выполняется взаимным расположением заглушек и щелевых каналов - напротив. При таком расположении продукты сгорания, протекающие по каналу, более равномерно воздействуют на мембраны. Давление вскрытия мембран становится более стабильным.

Другим обстоятельством, влияющим на работу двигателя, является обеспечение «прозрачности» перфорированной заглушки для продуктов сгорания маршевой камеры. Другими словами, суммарная площадь перфораций в заглушках должна обеспечивать дозвуковое истечение продуктов сгорания через заглушки.

В практическом проектировании отношение проходного сечения камеры к площади критического сечения выбирают в соотношении 2,5:1.

Таким образом, для случая проходного сечения в виде перфораций зависимость принимает вид:

nπR2≥2,5Sкр,

где n - суммарное число перфораций в заглушках;

R - радиус перфораций;

Sкр - площадь критического сечения сопла.

Предложенное техническое решение позволяет повысить надежность двигателя путем применения простых конструктивных решений.

Двухрежимный ракетный двигатель твердого топлива, содержащий цилиндрический корпус, стартовую и маршевую камеры с пороховыми канальными зарядами, разделительное днище, устройство вскрытия днища, сопло, отличающийся тем, что устройство вскрытия выполнено в виде симметрично расположенных относительно продольной оси двигателя на днище сферических перфорированных заглушек, выгнутых в сторону маршевой камеры, причем со стороны стартовой камеры заглушка взаимодействует с тонкостенной мембраной, повторяющей форму заглушки, герметично закрепленной по периферии на заглушке и имеющей теплозащитное покрытие, при этом заглушка расположена напротив канала порохового заряда маршевой камеры, а размер перфорации выбирается, исходя из следующих соотношений:
nπR2≥2,5Sкр
2δ(τср)>Ркс·R·K,
где n - число перфораций в заглушках;
R - радиус перфорации;
Sкр - площадь критического сечения сопла;
δ - толщина мембраны;
τср - допустимое напряжение на срез материала мембраны;
Pкс - давление в стартовой камере;
K - коэффициент запаса прочности.



 

Похожие патенты:

Изобретение относится к ракетной технике и может быть использовано при создании летательных аппаратов, содержащих двухрежимный двигатель. .

Изобретение относится к конструкциям "щеточных" метательных зарядов к реактивным двигателям с малым временем работы. .

Изобретение относится к ракетной технике и может быть использовано при создании летательных аппаратов, содержащих двухрежимный двигатель. .

Изобретение относится к ракетной технике и может быть использовано при создании летательных аппаратов, содержащих двухрежимный двигатель. .

Изобретение относится к ракетной технике и может быть использовано при создании летательных аппаратов, содержащих двухрежимный двигатель. .

Изобретение относится к области импульсных ракетных двигателей на твердом топливе (ИРДТТ), в которых происходит преобразование химической энергии порохового заряда в тепловую энергию газов, а затем в кинетическую энергию истекающей газовой струи, в частности, к ИРДТТ, в которых время преобразования энергии определяется сотыми и тысячными долями секунды.

Изобретение относится к области ракетной техники, в частности к вкладным зарядам ракетного твердого топлива стартовых двигателей снарядов контейнерного запуска со временем работы двигателя, превышающим время движения снаряда по направляющей, и может найти применение в стартовых двигателях неуправляемых снарядов и управляемых ракет.

Изобретение относится к области ракетной техники, а именно к разработке, проектированию и изготовлению твердотопливных зарядов, обеспечивающих высокую тяговооруженность ракетных двигателей (РД), в первую очередь для тактических ракет, а также для стартовых ступеней ракет различного назначения.

Изобретение относится к области ракетной техники, а именно к разработке, проектированию и изготовлению твердотопливных зарядов к ракетным двигателям. .

Изобретение относится к ракетной технике и может быть использовано в конструкциях маршевых и разгонных ступеней ракетных двигателей твердого топлива

Изобретение относится к ракетной технике и может быть использовано в конструкциях маршевых и разгонных ступеней ракетных двигателей твердого топлива

Изобретение относится к реактивным двигателям импульсного действия и применяется в авиа и ракетостроении

Изобретение относится к ракетной технике и может быть использовано при создании летательных аппаратов, содержащих двухимпульсный ракетный двигатель

Изобретение относится к области ракетной техники и может быть использовано при проектировании и производстве зарядов ракетного твердого топлива, формуемых непосредственно в корпус двигателя. Заряд смесевого твердого ракетного топлива содержит головной и сопловой полузаряды, скрепленные с корпусом. Задний торец головного полузаряда перфорирован глухими отверстиями, равномерно расположенными на двух концентрических окружностях. Ближайшие к каналу отверстия глубиной 1,2 максимальной толщины свода полузаряда отстоят от канала на расстоянии 0,21-0,22 максимальной толщины свода полузаряда. Удаленные от канала отверстия глубиной, равной максимальной толщине свода полузаряда, отстоят от предыдущих отверстий на расстоянии, равном удвоенному расстоянию, на которое ближайшие к каналу отверстия отстоят от канала полузаряда. В сопловом полузаряде, на длине, равной 0,65-0,7 длины соплового полузаряда, выполнены щелевые прорези, увеличивающиеся по высоте к заднему торцу до 0,9 максимальной толщины свода полузаряда. Изобретение позволяет повысить коэффициент заполнения камеры сгорания топливом. 3 ил.

Изобретение относится к ракетной технике и предназначено для использования в ракетах систем залпового огня. Ракетный двигатель твердого топлива содержит корпус с защитно-крепящим слоем, сопло и секционный заряд с секциями большого относительного удлинения с манжетами. Донная секция заряда выполнена из топлива с увеличенной скоростью горения по сравнению со скоростью горения остальных секций заряда. Один из межсекционных объемов выполнен в виде кольцевой полости Т-образного сечения, образованной торцами секций заряда, манжетами и втулкой, прилегающей к корпусу, выполненных из композиционных материалов с высокой степенью демпфирования акустических колебаний. Изобретение позволяет повысить энергетические характеристики ракетного двигателя при обеспечении надежности его функционирования. 1 ил.

Изобретение относится к ракетной технике и может быть использовано в конструкциях маршевых двигателей на твердом топливе для верхних ступеней, которые характеризуются малым отношением длины к диаметру. Ракетный двигатель содержит корпус с днищами и скрепленный с корпусом канальный заряд, разделенный на две части наклонной кольцевой щелью, образованной тонкостенным неизвлекаемым формообразующим элементом. Неизвлекаемый формообразующий элемент одной законцовкой скреплен по наружному диаметру с корпусом, а его внутренний диаметр превышает диаметр канала заряда с образованием глухого кольцевого зазора между каналом заряда и второй законцовкой формообразующего элемента. Вся поверхность формообразующего элемента со стороны заднего днища снабжена бронирующим покрытием. К части или ко всей поверхности формообразующего элемента со стороны переднего днища прилегает тонкостенный элемент из антиадгезионного материала. Вторая законцовка формообразующего элемента выполнена отогнутой от канала заряда. Изобретение позволяет повысить объемное заполнение корпуса двигателя топливом при одновременном достижении диаграммы изменения поверхности горения от свода, близкой к постоянной. 1 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам, предназначенным для генерирования газов, и может быть использовано для наддува подушек безопасности, авиажелобов для эвакуации пассажиров, спасательных плотов и т.п. Импульсный газогенератор включает функциональный заряд, размещенный с периферийным зазором в камере сгорания, связанной с несоосным выпускным соплом и помещенной между дросселирующей решеткой и диафрагмой сообщения. В крышке камеры сгорания установлен электровоспламенитель, инициирующий воспламенение и горение заряда. Функциональный заряд выполнен из канальных шашек, примыкающих между собой и вписанных в поперечное сечение камеры сгорания. Шашки радиально опираются на стержни крепления газопроводных опор - диафрагму и дросселирующую решетку, установленную в крышке с возможностью продольного перемещения относительно ее конфузора, направленного в камеру сгорания. На торце заряда конформно закреплен усилительный пиротехнический заряд. Ресивер с выпускным соплом сообщается непосредственно, а выпускное сопло расположено тангенциально камере сгорания. Газогенератор является компактным и имеет высокую функциональную надежность, характеризуется быстродействием, при расширении возможностей его адаптивного монтажа в стесненных условиях ограниченного объема основных изделий. 2 з.п. ф-лы, 4 ил.

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя твердого топлива с большим временем работы. Ракетный двигатель твердого топлива содержит два полукорпуса - передний и задний, снаряженные передним и задним полузарядами торцевого горения, открытые торцы которых обращены друг к другу, а также сопловой блок и воспламенитель, газосвязанные с полукорпусами. Сопловой блок выполнен в виде одного центрального сопла, газосвязанного с открытыми торцами полузарядов расходной трубой, пропущенной через задний полузаряд. Задний полузаряд отделен от расходной трубы, которая проходит внутри покрытого бронировкой канала, выполненного в заднем полузаряде. Центральное сопло установлено на крепежном фланце, выполненном на заднем полукорпусе. Изобретение позволяет уменьшить поперечные габариты двигателя, увеличить суммарный импульс тяги, исключить тепловое воздействие на задний полукорпус, упростить конструкцию двигателя и улучшить его технологичность. 6 з.п. ф-лы, 1 ил.

Изобретения относятся к ракетной технике и могут быть использованы при создании ракеты и ракетного двигателя твердого топлива, имеющих габаритные ограничения в исходном состоянии, причем длина полезного груза ракеты сопоставима с длиной корпуса ракетного двигателя. Ракета содержит тянущий ракетный двигатель твердого топлива и толкающий ракетный двигатель. Тянущий ракетный двигатель твердого топлива включает сопловой блок, образованный несколькими равномерно распределенными по окружности наклонными соплами, установленными на заднем днище, а также задний узел стыка. С корпусом ракетного двигателя твердого топлива сопряжен стакан, с внутренней цилиндрической поверхностью которого контактирует поддон с полезным грузом, связанный с толкающим ракетным двигателем. Длина и масса ракетного двигателя твердого топлива превышают длину и массу толкающего ракетного двигателя. Другое изобретение относится к ракетному двигателю твердого топлива, содержащему корпус с днищами, задний узел стыка, сопловой блок, а также сопряженный с передним днищем стакан. С внутренней цилиндрической поверхностью стакана контактирует поддон с полезным грузом. Стакан сопряжен с задним днищем и имеет открытый задний торец, при этом площадь поперечного сечения заднего узла стыка определена тянуще-изгибной нагрузкой, равной сумме величины тяги ракетного двигателя твердого топлива и полетных нагрузок. Группа изобретений позволяет повысить энергомассовое совершенство ракеты и ракетного двигателя твердого топлива, упростить их конструкцию и повысить надежность, а также минимизировать габариты ракеты в ее исходном состоянии. 2 н. и 8 з.п. ф-лы, 2 ил.
Наверх