Способ получения оксида цинка из сернокислого раствора

Изобретение относится к гидрометаллургии цинка и может быть использовано для переработки цинксодержащих сернокислых растворов для получения оксида цинка. Способ получения оксида цинка из сернокислого раствора включает выделение из раствора цинксодержащего осадка осаждением гидроксидом аммония. Затем ведут обработку осадка раствором карбоната или бикарбоната аммония, сушку и прокалку. После выделения цинксодержащего осадка его помещают в автоклав при заполнении почти всего объема последнего, нагревают в автоклаве до температуры 130-170°С и выдерживают при этой температуре и равновесном давлении разложения гидроксида цинка, превышающем внешнее давление в автоклаве над осадком. Затем проводят фильтрование, промывку и сушку осадка. Прокалку осадка ведут при температуре от 300 до 700°С. Техническим результатом изобретения является снижение энергозатрат при фильтации, сушке и прокалке, уменьшение расхода реагентов и улучшение экологических характеристик процесса. 5 ил., 3 табл.

 

Изобретение относится к области гидрометаллургии цинка и может быть использовано для переработки цинксодержащих отходов для получения оксида цинка.

Известен способ получения оксида цинка из сернокислого раствора осаждением гидроксида цинка гидроксидом аммония с последующей прокалкой осадка при температуре 900°С [Евдокимова А.К. и др. О внедрении нового метода производства окиси цинка для нужд лакокрасочной и других отраслей промышленности. Цветные металлы. 1962. №4. С.41-46.]

Недостатками способа являются высокая влажность осадка даже после двух-, трехкратной отмывки (влажность 400-500%), наличие большого количества вводно-растворимых примесей, захваченных при осаждении гидроксида с маточником, высокая температура прокалки во вращающейся трубчатой печи (900-950°С).

Наиболее близким техническим решением является способ получения оксида цинка из сернокислого раствора [Абевова Т.А. и др. Способ получения оксида цинка из цинксодержащих продуктов. Патент РФ 2019511, 1994, Бюл. №17], включающий выделение из раствора цинксодержащего осадка осаждением гидроксидом аммония, обработку осадка раствором карбоната или бикарбоната аммония, сушку и прокалку при 750°С.

Недостатком способа является то, что из слабоконцентрированных растворов наряду с основным сульфатом цинка образуется объемный гидрофильный, плохо фильтрующийся аморфный осадок гидроксида цинка, что вызывает затруднения при его дальнейшей обработке карбонатом или бикарбонатом аммония, большой расход этих реагентов, а сушка и прокалка при 750°С сопровождаются выделением большого количества углекислого газа и аммиака.

Задачей, на решение которой направлено заявленное изобретение, является нахождение оптимальных условий для быстрого и эффективного способа получения оксида цинка.

Техническим результатом, который может быть достигнут при осуществлении изобретения, является эффективность процесса получения оксида цинка.

Этот технический результат достигается тем, что в известном способе получения оксида цинка из сернокислого раствора, включающем выделение из раствора цинксодержащего осадка осаждением гидроксидом аммония, обработку осадка раствором карбоната или бикарбоната аммония, сушку и прокалку, после выделения цинксодержащего осадка его помещают в автоклав при заполнении почти всего объема последнего, нагревают в автоклаве до температуры 130-170°С и выдерживают при этой температуре и равновесном давлении разложения гидроксида цинка, превышающем внешнее давление в автоклаве над осадком, с последующим фильтрованием, промывкой и сушкой осадка, прокалку осадка ведут при температуре от 300 до 700°С.

Сущность способа поясняется табл.1-3.

В табл.1 даны температуры разложения ряда соединений цинка и аммония, находящихся в цинксодержащих осадках по реакциям:

Использованы данные следующих источников:

1. Рабинович В.А., Хавин З.Я. Краткий хмический справочник. М.: Химия, Ленинградское отделение. 1977.

2. Рипан Р., Читяну И. Неорганическая химия, ч.2. М.: Мир. 1972. С.793.

Таблица 1
Температуры разложения ряда солей цинка и аммония, содержащихся в цинксодержащих осадках
Соли Температура, °С
(NH4)2SO4 >350
(NH4)2СО3 58
Zn(OH)2 125
ZnCO3 300
ZnSO4 740

По прототипу из достаточно концентрированных растворов сульфата цинка, содержащих 100 г/дм3 Zn (II), гидроксидом аммония с концентрацией 25% осаждаются гидроксосульфаты основных солей цинка, например, по реакции:

Даже двухкратная промывка основного сульфата цинка 3Zn(OH)2·ZnSO4 водой сохраняет высокое содержание иона SO42- (до 20%), что приводит к увеличению температуры прокалки до 900-950°С. Чтобы избежать такой сложности процесса, выделившийся осадок основных солей сульфата цинка обрабатывают раствором карбоната или бикарбоната аммония с концентрацией 40-100 г/дм3. При этом в результате обменной реакции

содержание сульфат-иона в осадке снижается с 20 до 3% в основном карбонате цинка.

Исходя из данных табл.1 замена сульфат-ионов на карбонат-ионы снижает температуру прокалки. Согласно прототипу при содержании в осадке иона SO42- до 3,0% осадок сушили и прокаливали при 750°С.

По предлагаемому способу при осаждении цинка гидроксидом аммония из слабоконцентрированных растворов сульфатов цинка образуется аморфный, гидрофильный, плохо фильтрующийся осадок гидроксида цинка, содержащий за счет захвата маточника (NH4)2SO4, ZnSO4, их двойные соли и т.п.

Согласно табл.1 выдержка такого осадка при температуре ≥ 125°С приводит к образованию оксида ZnO по реакции (3), при этом в газовую фазу уходят пары воды и, возможно, в небольших количествах аммиак при разложении захваченного из маточника гидроксида аммония. Образующийся после нагрева в автоклаве оксид цинка ZnO содержит сульфаты аммония и цинка, имеющие более высокую температуру разложения. Количество последних зависит от исходной концентрации сульфата цинка, числа циклов промывки, времени и температуры сушки и других условий.

Нагрев аморфного гидрофильного влагоемкого осадка гидроксида цинка приводит к тому, что в газовую фазу переходят значительные массы воды, что увеличивает энергозатраты.

Эти энергозатраты можно существенно сократить, если учесть, что нет необходимости испарять всю имеющуюся в осадке воду, достаточно, чтобы при температуре разложения выполнялось условие: равновесное давление водяных паров по реакции (3) Рравн было бы больше внешнего давления Р в автоклаве над осадком (давления насыщенных паров воды, содержащихся в системе, и давления высоты столба пульпы).

Нагрев при 125-300°С приводит к разложению гидроксида цинка. После такой обработки осадок фильтруют, промывают водой, а затем при необходимости растворами карбоната или бикарбоната аммония, расход которых резко снижается по сравнению с прототипом. Кроме того, если учесть, что согласно данным (Абевова Т.А. и др. Цветные металлы. №5, 1993. С.20-22), чем меньше содержание сульфат-ионов в прокаливаемом продукте, тем ниже температура прокалки, ниже содержание вводно-растворимых примесей в конечном продукте, выше содержание основного вещества и выше белизна продукта.

Пример конкретного выполнения способа

Стадия 1

Раствор, содержащий 100 мг/дм3 иона Zn (II), нейтрализуют раствором гидроксида аммония до рН 8-9. Осадок гидроксида цинка отделяют от раствора фильтрацией.

Рентгенофазовый анализ проводили на установке АРС-5 (Дрон-1); Cu - анод, Θ - углы скольжения, d/n, Å - межплоскостные расстояния, I/Iо, % - относительная интенсивность.

Рентгенофазовый анализ высушенного осадка свидетельствует об аморфном состоянии большей части фаз, из которых состоит данный образец. Однозначное решение качественного и количественного анализа рентгеновского спектра практически невозможно. Тем не менее, по наличию отдельных кристаллических рефлексов спектра обнаружен Zn(OH)2 - основа и примеси ZnO, ZnSO4, (NH4)2SO4, 3Zn(OH)2·ZnSO4·4H2O, 6Zn(OH)2·ZnSO4·4H2O и др.

Влажность осадка 85%.

Под микроскопом видна шаровидная форма частиц.

Стадия 2

Осадок после фильтации и промывки нагревают в автоклаве до 130-170°С и выдерживают при этих температурах не менее 30 мин.

Осадок заполняет значительный объем автоклава, чтобы избежать энергозатрат на испарение большого количества влаги влагоемкого осадка, вместе с тем при испарении части воды устанавливается давление насыщенных паров, соответствующих температурам 130-170°С.

После нагревания в автоклаве и охлаждения пульпы осадок легко фильтруется и промывается.

В табл.2 дана зависимость влажности осадка после фильтрования от температуры нагрева в автоклаве.

Таблица 2
Температура нагрева в автоклаве, °С 100 120 130 140 150 170 190
Влажность осадка после фильтрации, % мас. 86 83 69 65 62 64 65

Таким образом, после нагрева в автоклаве при 150°С осадок за счет перехода от коагуляционной к кристаллизационной структуре легко фильтруется и промывается.

В табл.3 дан количественный фазовый состав высушенного садка, полученного после нагревания.

Таблица 3
Характеристика фаз осадка, полученного на стадии 2 по данным рентгенофазового анализа
Фазы Содержание фаз в осадке, объемный % Межплоскостные расстояния d/n, Å Интенсивность I/I0
ZnO 71,56 2,48; 2,82; 2,60 100,71,56
α - ZnSO4 3,98 3,44; 2,67; 2,79 100,80, 50
β - ZnSO4 2,99 3,54; 4,17; 2,65 100,80,75
ZnO·2ZnSO4 2,97 2,97; 2,47; 3,67 100, 100,80
2ZnO·3ZnSO4 2,95 2,99; 3,71; 3,38 100,95,95
3Zn(OH)2·ZnSO4·4H2O 2,88 10,0; 2,75; 1,58 100,90,50
(NH4)2Zn(SO4)2 2,55 4,27; 4,17; 7,51 100,90,85
(NH4)2SO4 2,33 4,33; 4,39; 3,06 100,65,55
(NH4)2Zn(SO4)2·6H2O 2,29 4,15; 3,76; 4,30 100,65,60
ZnSO4·6H2O 2,25 4,40; 4,05; 2,92 100,53,27
CaSO4 1,75 3,50; 2,85; 2,33 100,30,20
Zn(OH)2 1,50 6,97; 3,09; 2,97 100,30,30

Под микроскопом видны кристаллы игольчатой формы, характерной для оксида цинка.

После нагрева в автоклаве, охлаждения и фильтрации осадка оставшуюся в осадке влагу удаляют сушкой для получения конечного продукта, пригодного для переработки на цинковых заводах.

Стадия 3

Для замены сульфат-ионов на карбонат-ионы полученный после нагрева в автоклаве осадок промывают растворами карбоната или бикарбоната аммония.

Из данных табл.1 видно, что карбонаты имеют более низкую температуру разложения, чем соответствующие сульфаты.

Из данных табл.3 количество сульфатов невелико, поэтому расход карбонатов незначителен, к тому же последующая после сушки прокалка имеет температуру меньше 700°С. В газовую фазу переходят незначительные количества углекислого газа и аммиака.

По мере снижения количества гидроксида цинка и увеличения основных сульфатов цинка и двойных солей сульфатов аммония и цинка осуществляется плавный переход от предлагаемого способа к прототипу.

Аналогичным образом можно осущестлять обезвоживание и других гидроксидов, как, например, Pb(ОН)2 (tразложения 145°С), Fe(OH)2 (tразложения 150-200°С), Вi(ОН)3 (tразложения 100°С), In(ОН)3 (tразложения 150°С), Cu(ОН)2 (при нагревании разлагается), Ni(OH)2 (tразложения 230°С) и др.

В качестве нейтрализаторов, помимо гидроксида аммония, можно использовать и другие щелочные реагенты, как, например NaOH, Ca(OH)2 и т.п.

По сравнению с прототипом снижаются энергозатраты при фильтрации, сушке и нагреве в автоклаве, уменьшается расход реагентов и улучшаются экологические характеристики процесса, так как газовая фаза содержит меньшие количества аммиака и углекислого газа.

Для получения конечного продукта по известному способу из осадка, содержащего 85% влаги и 15% сухого необходимо испарить 85:15=5,7 единиц влаги на единицу продукта, а по предлагаемому способу при влажности 60% (40% сухого) необходимо испарить 60:40=1,5 единиц влаги, т.е. в 5,7:1,5=3,8 раза меньше. Количество энергии, затрачиваемое на сушку продукта, снижается в такое же количество раз соответственно.

Способ получения оксида цинка из сернокислого раствора, включающий выделение из раствора цинксодержащего осадка осаждением гидроксидом аммония, обработку осадка раствором карбоната или бикарбоната аммония, сушку и прокалку, отличающийся тем, что после выделения цинксодержащего осадка его помещают в автоклав при заполнении почти всего объема последнего, нагревают в автоклаве до температуры 130-170°С и выдерживают при этой температуре и равновесном давлении разложения гидроксида цинка, превышающем внешнее давление в автоклаве над осадком, с последующим фильтрованием, промывкой и сушкой осадка, прокалку осадка ведут при температуре от 300 до 700°С.



 

Похожие патенты:

Изобретение относится к гидрометаллургии цинка и может быть использовано для переработки цинксодержащих отходов для получения оксида цинка. .

Изобретение относится к гидрометаллургическим способам очистки золотосодержащих цианистых растворов после десорбции золота от цветных металлов перед электроосаждением золота.

Изобретение относится к способу извлечения цветных металлов из водных растворов их солей и может быть использовано как для очистки отработанных растворов химического или гальванического никелирования от ионов никеля, кобальта, молибдена, вольфрама, ванадия висмута, так и для извлечения этих металлов из других растворов промышленного производства, а также для изготовления порошков указанных металлов или их суспензий.
Изобретение относится к гидрометаллургии благородных металлов и может быть использовано для разделения металлов при переработке солянокислых растворов, содержащих металлы платиновой группы, золото, сурьму и другие неблагородные элементы.

Изобретение относится к области гидрометаллургии цветных металлов и, в частности, к очистке сульфатных растворов, содержащих цветные металлы от железа. .
Изобретение относится к гидрометаллургии редких и благородных металлов, в частности к способам получения концентратов этих металлов из содержащих их кислых растворов.
Изобретение относится к гидрометаллургии редких и благородных металлов, в частности к способам получения концентрата, содержащего рений и платину, из содержащих их кислых растворов.
Изобретение относится к области металлургии благородных металлов, в частности к технологии селективного извлечения благородных металлов из растворов, содержащих цветные металлы.
Изобретение относится к способу извлечения и утилизации палладия, серебра и меди из отработанных электролитов, содержащих тиомочевину, серную кислоту, воду и шлам. .

Изобретение относится к гидрометаллургии цинка и может быть использовано для переработки цинксодержащих отходов для получения оксида цинка. .
Изобретение относится к способу переработки цинкового концентрата, содержащего оксиды кремния, железа, меди. .

Изобретение относится к металлургии, в частности к применяемым в гидрометаллургии цинка способам переработки цинксодержащего техногенного сырья. .

Изобретение относится к области цветной металлургии, а именно: к области получения чистого оксида цинка из различного цинкосодержащего техногенного сырья. .

Изобретение относится к способам получения оксида цинка для варисторов. .

Изобретение относится к химической промышленности, в частности к печам для получения окиси цинка из цинксодержащего сырья, используемой в лакокрасочной промышленности.

Изобретение относится к металлургии цинка, в частности к вальцеванию цинксодержащего сырья. .
Изобретение относится к способу извлечения цинка (II) из водного раствора ионообменными материалами и может быть использовано в цветной и черной металлургии, при очистке промышленных и бытовых стоков, а также в сельском хозяйстве и медицине.
Наверх