Способ совместного определения ионов переходных металлов в природных и сточных водах методом высокоэффективной жидкостной хроматографии

Изобретение относится к области аналитической химии и может быть использовано для одновременного определения содержания ионов переходных металлов Fe(III), Fe(II), Cu, Pb, Zn, Ni, Co, Cd, Mn в природных, поверхностных, сточных, подземных водах и водных вытяжках засоленных почв. Сущность предлагаемого изобретения заключается в том, что для одновременного определения содержания ионов применяет метод ВЭЖХ с разделением ионов на хроматографической колонке в токе элюента. Элюент состоит из раствора октансульфоната натрия, гидротартрата натрия и ацетонитрила в деионизованной воде. Затем происходит смешение в послеколоночном реакционном модуле с реагентом, представляющим собой раствор в деионизованной воде ПАР ([4-(2-пиридилазо)резорцинол], ледяной уксусной кислоты и водного аммиака. Далее регистрируют спектрофотометрическим детектором разности оптических поглощений элюента и комплексов определяемых ионов с введенным реагентом в видимой области спектра излучения при = 520 нм. Техническим результатом изобретения является повышение точности, обеспечение быстроты для одновременного определения содержания ионов переходных металлов Fe(III), Fe(II), Cu, Pb, Zn, Ni, Co, Cd, Mn в природных, поверхностных, сточных, подземных водах и водных вытяжках засоленных почв. 2 табл.

 

Изобретение относится к области аналитической химии и может быть использовано для одновременного определения содержания ионов переходных металлов Fe(III), Fe(II), Cu, Pb, Zn, Ni, Co, Cd, Mn в природных, поверхностных, сточных, подземных водах и водных вытяжках засоленных почв. Актуально использование изобретения при анализе попутных вод нефтегазовой промышленности. Присутствие ионов железа и других переходных металлов можно объяснить как результат процессов коррозии скважинного оборудования. Окисное железо(III) в подземных водах обычного состава присутствует в виде коллоидов в концентрациях нескольких мг/дм3, закисное железо(II) существует в ионной форме, в отсутствии кислорода устойчиво и может встречаться в количествах нескольких десятков мг/дм3. При утилизации промстоков на объектах нефтегазовой промышленности посредством закачки промстоков в глубоколежащие горизонты существует ограничение по содержанию в промстоках железа(III), которое способно ухудшить приемистость скважины вследствие осадкообразования. Известны спектрофотометрические, атомно-абсорбционные и другие методы определения указанных ионов металлов, например [1-3]. Как правило, определяется один из указанных ионов, другие мешают определению, требуют предварительного удаления или маскирования. Для каждого компонента требуется свой обширный набор дорогостоящих химреактивов. Ионы железа определяются суммарно, в виде общего железа. Применение метода высокоэффективной жидкостной хроматографии дает простой, экспрессный и высокочувствительный метод для разделения и определения содержания ионов переходных металлов. Производители жидкостных хроматографов предлагают хроматографические колонки для разделения и определения ионов переходных металлов, публикуют корпоративные информационные выпуски с примерами использования своей продукции [4-7]. Но международные стандарты (ISO) для определения тяжелых металлов на них отсутствуют.

Известен также хроматографический способ одновременного определения ионов кадмия, свинца, цинка, никеля и меди (по патенту Российской Федерации №2037824 МПК 6 G01N 30/06, опубл. 19.06.1995 г.) [8] с предварительной обработкой анализируемой пробы комплексоном диэтилдитиокарбоминатом натрия с разделением полученных хилатов металлов в хроматографической колонке в потоке подвижной фазы (элюента), содержащей ацетонитрил, воду и хлороформ, и последующим УФ-детектированием компонентов. К недостаткам этого метода можно отнести необходимость предварительной пробоподготовки и недостаточно широкого набора переходных металлов для одновременного определения.

Сущность предлагаемого нами изобретения: для быстрого, одновременного определения содержания ионов переходных металлов, причем для ионов железа в разных степенях окисления используется ВЭЖХ с применением хроматографического комплекса Alliance Waters с разделением ионов на хроматографической колонке Delta-Рас С 18 фирмы Waters или аналогичной от другого производителя в токе предлагаемого нами элюента. Элюент готовится последовательным растворением в литре деионизованной воды 2 ммоль октанесульфоната натрия, 35 ммоль гидротартрата натрия и 50 мл ацетонитрила. Скорость элюирования 0,8 мл/мин, температура 25°С. После разделения ионы металлов поступают в послеколоночный реакционный модуль, где смешиваются с послеколоночным реагентом с образованием окрашенных комплексов. Реагент готовится последовательным растворением в деионизованной воде 0,2 ммоль ПАР ([4-(2-пиридилазо) резорцинол]), 1 моль ледяной уксусной кислоты и 3 моль водного аммиака. Скорость подачи в реакционный модуль реагента 0,5 мл/мин, температура 25°С. Применяется спектрофо-тометрический детектор для регистрации разности оптических поглощений элюента и комплексов определяемых ионов с реагентом в видимой области спектра излучения при λ=520 нм. Объем инжекции от 1 до 100 мкл. Продолжительность анализа 25 минут. Диапазон измерений массовой концентрации для различных ионов переходных металлов от 0,1 до 20 мг/дм3. Более концентрированные исследуемые пробы воды разбавляются. Пробоподготовка заключается в разбавлении консервированной по ГОСТ Р 51592 пробы исследуемой воды раствором азотной кислоты в деионизованной воде концентрацией 0,01 моль/дм3. Для приготовления градуировочных растворов смесей ионов переходных металлов применяют государственные стандартные образцы (ГСО) водных растворов индивидуальных ионов с массовой концентрацией 1,0 мг/см3. Для градуировки необходимые аликвоты ГСО разбавляются в азотной кислоте концентрацией 0,01 моль/дм3. Составляется серия растворов, рекомендуемые номинальные концентрации ионов в градуировочных растворах приведены в таблице 1

Таблица 1
Наименование иона Массовая концентрация иона в растворе, мг/дм3
Раствор №1 Раствор №2 Раствор №3 Раствор №4 Раствор №5 Раствор №6
Fe(III) 0,2 1,0 2,0 4,0 10,0 20,0
Cu 0,1 0,5 1,0 2,0 5,0 10,0
Pb 0,5 0,5 1,0 2,0 5,0 10,0
Zn 0,1 0,5 1,0 2,0 5,0 10,0
Ni 0,1 0,5 1,0 2,0 5,0 10,0
Со 0,1 0,5 1,0 2,0 5,0 10,0
Cd 0,1 0,5 1,0 2,0 5,0 10,0
Fe(II)* 0,2 1,0 2,0 4,0 10,0 20,0
Mn 0,1 0,5 1,0 2,0 5,0 10,0
Примечание - Градуировочные растворы Fe(II) готовят по ГОСТ 4212. Градуировка по Fe(II) проводится отдельно. Растворы используют свежеприготовленными.

Содержание ионов переходных металлов рассчитывают по градуировочным графикам по компьютерной программе, которой комплектуется хроматографический комплекс Alliance Waters. Примеры определения ионов переходных металлов в промстоках станций подземного хранения газа приводятся в таблице 2.

Таблица 2
Наименование объекта Определяемые металлы, мг/дм3
Fe(III) Cu Pb Zn Ni Co Cd Fe(II) Mn
Песчано-Уметская СПХГ 25,11 0,36 отс 1,35 0,29 отс отс 5,43 отс
Елшано-Курдюмская СПХГ 203,20 2,29 отс 1,26 0,28 отс отс 32,80 отс
Степновская СПХГ 145,80 1,69 отс 0,31 0,39 отс отс 19,39 отс
Алгайское месторождение скв 1 122,40 отс отс 0,03 2,50 отс 38,20 213,80 4,30

Библиография

[1] ПНД Ф 14.1:2:4.139-98. Методика выполнения измерений массовых концентраций железа, кобальта, марганца, меди, никеля, серебра, хрома и цинка в пробах питьевых, природных и сточных вод методом атомно-абсорбционной спектрометрии. - М.: Государственный комитет РФ по охране окружающей среды, 1998 г., (издание 2004 г.).

[2] ПНД Ф 14.1:2.2-95. Методика выполнения измерений массовой концентрации общего железа в природных и сточных водах фотометрическим методом с о-фенантролином. - М.: Министерство охраны окружающей среды и природных ресурсов РФ, 1995 г. (издание 2004 г.).

[3] ГОСТ СССР 4011-72 Вода питьевая. Методы измерения массовой концентрации общего железа. - М.: Издательство стандартов,

[4] Каталог запчастей, хроматографических колонок и принадлежностей Waters (Waters quality parts, chromatography columns and supplies catalog), 2006-2007, с.136.

[5] Д.Мишо, Дж.Крол. Сравнение методов обменной и обратнофазовой хроматографии для определения ионов переходных металлов (D. Michaud and J. Krol. A comparison of exchange and reverse phase chromatographie for transition metal ion analysis). Лаб. Хайлайтс (Lab Highlights), 0393 4/89 - Waters.

[6] В.Уоррен, Дж.Крол. Применение программного обеспечения WISE: Оптимизация смешанного элюента тартрат/цитрат для анализа переходных металлов (V.Warren, J.Krol. Application of WISE Software: Optimization of a tartrate / citrate blended eluent for transition metal analysis). Лаб. Хайлайтс (Lab Highlights). 0413 6/89 - Water.

[7] Определение переходных металлов методом ионной хроматографии (De-Terminanions of Transitions Metals by Ion Chromatography). Technical Note 10. - Dionex.

[8] Описание изобретения к патенту RU №2037824 МПК 6 G01N 30/06. Способ одновременного качественного и количественного определения кадмия, свинца, цинка, никеля и меди. / Соснина М.В., Мотылева С.М. 1995 г.

Способ одновременного определения в природных и сточных водах ионов железа(II), железа(III), меди, свинца, цинка, никеля, кобальта, кадмия, марганца методом высокоэффективной жидкостной хроматографии с разделением ионов на хроматографической колонке в токе элюента, состоящего из водного раствора октанесульфоната натрия, гидротартрата натрия и ацетонитрила, последующем смешении в послеколоночном реакционном модуле с реагентом, представляющим водный раствор ПАР ([4-(2-пиридилазо)резорцинол], ледяной уксусной кислоты и водного аммиака; регистрации спектрофотометрическим детектором разности оптических поглощений элюента и комплексов определяемых ионов с введенным реагентом в видимой области спектра излучения при = 520 нм.



 

Похожие патенты:

Изобретение относится к способу получения перфторированного производного сложного эфира посредством химической реакции, где указанная реакция представляет собой реакцию фторирования служащего сырьем исходного соединения, реакцию химического превращения фрагмента перфторированного производного сложного эфира с получением другого перфторированного производного сложного эфира или реакцию взаимодействия карбоновой кислоты со спиртом при условии, что по меньшей мере один из реагентов - карбоновая кислота или спирт - представляет собой перфторированное соединение, причем указанное перфторированное производное сложного эфира представляет собой соединение, в состав которого входит фрагмент приведенной ниже формулы 1 и имеет температуру кипения самое большее 400°С, согласно которому время проведения упомянутой химической реакции является достаточным для того, чтобы выход перфторированного производного сложного эфира достиг заранее заданного значения, и при этом указанный выход перфторированного производного сложного эфира определяют посредством газовой хроматографии с использованием неполярной колонки.

Изобретение относится к устройствам аналитического приборостроения и может быть использовано в качестве хроматографического устройства в нефтеперерабатывающей, нефтехимической и других областях для измерения содержания микропримесей.

Изобретение относится к области хроматографического анализа и предназначено для определения ширины, высоты и площади хроматографического пика. .

Изобретение относится к газовому анализу. .

Изобретение относится к газовой и жидкостной хроматографии. .

Изобретение относится к регистраторам для хроматографов. .

Изобретение относится к газовой, и жидкостной хроматографии. .

Изобретение относится к аналитическому приборостроению и может быть использовано при осуществлении количественного и качественного анализа проб, разделяемых проявительным, вытеснительным и фронтальным методами хроматографии.

Изобретение относится к устройствам для разделения и анализа сложных смесей и может быть использовано для измерения содержания микропримесей . .

Изобретение относится к инструментальной аналитической химии, в частности к определению стабильных изотопов в пищевых продуктах
Изобретение относится к области аналитической химии и может быть использовано для одновременного определения содержания диэтиленгликоля и метанола в природных, поверхностных, подземных, сточных и технологических водах

Изобретение относится к интегральному анализу биологических тканей и выделений организма человека с использованием метода хромато-масс-спектрометрии (ГХ/МС). Способ может быть использован в медицине, биологии, экспертно-криминалистической, судебной и оперативно-розыскной деятельности. Заявленный способ заключается в том, что исследуемый образец помещают в герметичную емкость из инертного материала, термостатируют до температуры выше 25°С, но ниже температуры разрушения исследуемого биологического объекта. Из термостатированного образца осуществляют отбор пробы парогазовой фазы, которую исследуют хромато-масс-спектрометрически путем разделения на хроматографической колонке. Затем компоненты смеси парогазовой фазы регистрируют в виде ряда хроматографических пиков на хроматограмме и идентифицируют по времени их выхода на хроматограмме и масс-спектру. Расчет концентрации спиртов производят в соответствии с полученной хроматограммой по соответствующим площадям пиков компонентов смеси парогазовой фазы. Техническим результатом является повышение чувствительности, точности и надежности идентификации и количественного исследования, а также сохранение используемого объекта для возможных повторных или дополнительных исследований. 1 табл., 8 ил.
Изобретение относится к области прогнозирования процессов старения синтетических полимерных материалов (СПМ) в зависимости от продолжительности их эксплуатации или хранения. Анализ летучих органических соединений (ЛОС), мигрирующих из СПМ, проводят путем активного отбора проб на сорбент, с последующей термической десорбцией и газохроматографическим анализом. Прогнозирование процессов старения материалов и оценку токсичности газовыделения проводят по динамике качественного и количественного состава компонентов газовыделения в исходном состоянии СПМ и в процессе искусственного климатического термовлажностного старения. Анализ динамики суммарного газовыделения (ΣT) из каждого материала проводят для всех веществ, мигрирующих из исследованных СПМ. Оценку изменения токсичности и прогнозирование процессов старения материалов проводят по разработанным показателям суммарного газовыделения (ΣT) и по гигиеническому показателю Р=(ΣTисх/ΣTn)/V, где Tисх и Tn - показатели токсичности газовыделения каждого вещества в исходном и состаренном состояниях соответственно, а ΣТисх и ΣTn - суммарный показатель токсичности газовыделения всех входящих в состав образца СПМ в исходном и состаренном состояниях, V - длительность старения (год, месяц). Изобретение позволяет достигать высокой точности метода детектирования количественного и качественного состава ЛОС в газовыделении в процессе старения материалов и воспроизводимости результатов анализа. 3 табл.

Изобретение относится к высокочувствительному способу определения количества глицирризина, глицирретиновой кислоты и их фармакологически приемлемых солей, присутствующих в плазме крови человека. Высокочувствительный способ определения количества глицирризина, глицирретиновой кислоты и их фармакологически приемлемых солей характеризуется тем, что смесь плазмы крови человека с метанолом или раствором аммиачной воды с определенной концентрацией вводят в твердую фазу, обладающую обращенно-фазовой распределительной функцией и функцией анионного обмена, затем промывают твердую фазу очищающей жидкостью, представляющей собой однокомпонентную жидкость или жидкую смесь, по меньшей мере, двух компонентов, выбранных из группы, включающей воду, щелочь, спирт и ацетонитрил. Далее проводят элюирование из твердой фазы кислым спиртом, выбранным из муравьиной кислоты-метанола или муравьиной кислоты-этанола, после чего проводят стадию количественного определения глицирризина, глицирретиновой кислоты и их фармакологически приемлемых солей методом ЖХ-МС или ЖХ-МС/МС. Высокочувствительный способ позволяет обнаружить и количественно определить глицирризин, глицирретиновую кислоту и их фармакологически приемлемые соли в плазме крови человека. 4 ил., 17 табл., 7 пр.

Данное изобретение имеет отношение к автоматизированному анализу пластовых флюидов, таких как газированная (находящаяся под давлением) сырая нефть. Анализ образца пластового флюида включает в себя разделение образца пластового флюида на поток газообразной фазы и поток жидкой фазы. Также включает определение состава потока газообразной фазы, измерение параметра потока жидкой фазы и определение объема компонентов потока жидкой фазы по меньшей мере частично на основании измеренного параметра потока жидкой фазы. Система для анализа образца пластового флюида включает в себя мерный сосуд (126), выполненный с возможностью принимать образец пластового флюида, фазоразделитель (128), выполненный с возможностью принимать образец пластового флюида из мерного сосуда (126) и разделять образец пластового флюида на поток газообразной фазы и поток жидкой фазы. Также система включает газовый хроматограф (134), выполненный с возможностью принимать поток газообразной фазы из фазоразделителя (128), и расходомер жидкости (138), выполненный с возможностью обнаруживать границу раздела, содержащую по меньшей мере один компонент потока жидкой фазы. Техническим результатом является автоматизация анализа образца пластового флюида, такого как образец пластового флюида, находящегося под давлением, например, газированной нефти. 2 н. и 12 з.п. ф-лы, 3 ил.

Изобретения относятся к области молекулярной биологии и касаются рекомбинантной ДНК pA4, рекомбинантной плазмидной ДНК pQE 30-А4, штамма Esherichia coli M15-A4, рекомбинантного полипептида А4, обладающего способностью селективно связывать человеческий сывороточный альбумин (ЧСА), аффинного сорбента, содержащего такой полипептид, аффинного комбинированного сорбента и способов последовательного удаления ЧСА и IgG из сыворотки крови. Охарактеризованный аффинный комбинированный сорбент получен смешением аффинного сорбента, содержащего указанный рекомбинантный полипептид А4, и аналогичного аффинного сорбента, в котором в качестве лиганда использован известный рекомбинантный IgG-связывающий полипептид. Представленные изобретения могут быть использованы в медицинской практике для освобождения сыворотки крови от двух белков, альбумина (ЧСА) и иммуноглобулина G (IgG), находящихся в ней в высоких концентрациях. Удаление двух мажорных белков из сыворотки крови позволит определить другие белки, присутствующие в сыворотке в более низких концентрациях. 8 н.п. ф-лы, 9 ил., 7 пр., 1 табл.

Изобретение относится к исследованиям в области индикации и идентификации химических веществ, в частности к оптимизации способа проведения специального химического контроля. Предложен способ обнаружения и идентификации токсичных химикатов с использованием мобильного комплекса химического контроля согласно разработанному алгоритму проведения химического контроля с использованием оборудования данного комплекса. Способ включает следующие три этапа: экспресс-анализ, проводимый до 30 минут последовательно с помощью газоанализатора GDA 2.5, спектрометров TruDefender FTG, FirstDefender и TruDefender FT; отбор проб, проводимый до 5 минут параллельно с помощью пробоотборных трубок Tenax-ТА и комплекта КПО-1М; углубленный анализ, проводимый до 180 минут с помощью хромато-масс-спектрометра Agilent 5975Т, включающего парофазную систему Agilent G1888 и термодесорбер АСЕМ 9300. Технический результат – повышение точности обнаружения различных концентраций токсичных химикатов и идентификации этих веществ в объектах окружающей среды, а также своевременное информирование должностных лиц о характере примененного химиката с целью принятия ими дальнейшего решения на проведение соответствующих мероприятий. 2 ил.
Наверх