Источник, формирующий протонный пучок

Изобретение относится к области вакуумной электроники и может найти применение в технологических процессах, использующих протонные пучки, а также для сканирующей и просвечивающей протонной микроскопии. Устройство включает в себя вакуумную камеру, катод, сетку, анод из палладия, протоновод, аккумулятор протонов и нагреватель, при этом протоновод изготовлен из материала с высокой электропроводностью по ионам водорода и соединяет аккумулятор протонов с анодом, на который подан отрицательный потенциал по отношению к аккумулятору протонов. Аккумулятор протонов, в частности, может быть изготовлен из электролита, в котором присутствуют ионы водорода, или из композитного материала, содержащего соединение, адсорбирующее водород, а протоновод может дополнительно содержать нагреватель. Технический результат заключается в том, что в предложенном устройстве источника протонного пучка формируется пучок протонов с высокой плотностью, при высоком вакууме. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к области вакуумной электроники и может быть использовано в технологических процессах, использующих протонные пучки, а также для сканирующей и просвечивающей протонной микроскопии. Более конкретно изобретение относится к новому источнику протонов - устройству, являющемуся источником формирования пучка протонов.

Известен протонный источник с автоионной эмиссией ионов водорода в сильном электрическом поле, создаваемом на аноде, выполненном в виде острия из металла (УФН, 1962, т.77, вып.3, стр.481-552). На острие подается электрический потенциал, достаточно высокий 108 В/см, чтобы ионизировать молекулу водорода, которая является источником протонов или однозарядных ионов. Однако такой источник создает пучки протонов с низкой плотностью протонов. Недостатком такого источника, кроме того, является ухудшение вакуума в системе, наличие ионов молекулярного водорода, что представляет собой проблему в случае необходимости высокого вакуума, например в целях фокусировки пучка, когда длина свободного пробега зависит от плотности молекул и ионов водорода в объеме и должна быть больше характерных расстояний от источника протонов до места их фокусировки.

Наиболее близким по технической сущности и достигаемому результату является источник протонного пучка, не имеющий вышеуказанных недостатков (заявка Японии, JP 59130056). Он представляет собой устройство, в котором отсутствует водород внутри объема источника, а протоны под действием электрического потенциала эмитируются из анода, выполненного в виде наполняемого водородом палладиевого электрода. Этот электрод представляет собой мембрану, отделяющую вакуумируемый объем от внешней среды, чем достигается возможность сохранения высокого вакуума. Мембрана из палладия расположена на торце трубки, подводящей к мембране содержащие протоны молекулы водорода, которые под действием подогрева до температура 400°С диффундируют в палладий. Таким образом, подводящая трубка играет роль протоновода, с одной стороны, а также объема, в котором аккумулируется избыточный запас протонов, с другой. Накапливаясь в палладии, протоны под действием поля сетки, находящейся под отрицательным по отношению к аноду потенциалом, эмитируются с поверхности палладиевого электрода, обращенной к вакуумированному объему, при этом они не успевают захватить электрон и превратиться в водород, ускоряясь под действием потенциала катода, внутри вакуумной камеры. Таким образом решается задача сохранения высокого вакуума при создании протонного пучка.

Однако указанный выше известный источник также имеет ряд недостатков: так, для создания интенсивного протонного пучка требуется использовать палладиевый электрод в виде тонкой мембраны с большой площадью, при этом чем меньше ее толщина и чем больше ее площадь, тем большую плотность тока протонов можно достичь, с другой стороны, водород в подающей трубе находится под давлением и разогрет, что, естественно, ограничивает площадь палладиевой мембраны и ее толщину, для предотвращения ее разрыва в силу конечной механической прочности мембраны.

Кроме того, для получения максимально возможного потока водорода через протоновод требуется поднять температуру водорода в подводящей трубе, что в силу увеличивающейся при этом диффузии атомов водорода через палладиевый электрод ухудшает вакуум внутри камеры и уменьшает прочность палладиевого электрода.

Вероятно, из-за перечисленных недостатков данное изобретение не нашло применения, о чем свидетельствует отсутствие патентной защиты (по цитируемой заявке не выдан патент).

Задачей заявляемого изобретения является разработка такой конструкции источника протонного пучка, которая позволила бы формировать пучок протонов с высокой плотностью, при высоком вакууме и при этом была бы технически реализуема. Для этого в качестве протоновода, поставляющего протоны в палладиевый электрод, в предлагаемом устройстве предложено использовать материал с высокой ионной проводимостью по ионам водорода.

Задача решается тем, что создан источник пучка протонов, включающий вакуумную камеру, катод, сетку, анод из палладия, протоновод, аккумулятор протонов и нагреватель, при этом протоновод изготовлен из материала с высокой электропроводностью по ионам водорода и соединяет аккумулятор протонов с анодом, на который подан отрицательный потенциал по отношению к аккумулятору протонов.

Аккумулятор протонов может быть изготовлен преимущественно из электролита, в котором присутствуют ионы водорода, или из композитного материала, содержащего соединение, адсорбирующее водород.

Протоновод, в частности, может содержать нагреватель.

В отличие от известного источника в предлагаемом устройстве протоновод выполнен из материала, имеющего высокую ионную проводимость по ионам водорода, позволяющую под действием электрического поля транспортировать протоны от аккумулятора протонов к аноду с высокой плотностью. В частности, аккумулятор протонов может быть изготовлен из электролита, содержащего ионы водорода, либо из композита, содержащего соединение, способное адсорбировать водород. Все это позволяет достичь новый технический результат, заключающийся в том, что создан принципиально новый источник протонов, который позволяет формировать пучки протонов с высокой плотностью, при высоком вакууме и при этом является технически реализуемым.

Общая схема предлагаемого источника пучка ионов изображена на фиг.1, где в вакуумную камеру 1, помещен катод 2, который находится под ускоряющим потенциалом по отношению к аноду, между анодом и катодом расположена сетка 3, которая находится под отрицательным потенциалом по отношению к аноду, меньшим по сравнению с потенциалом катода, играющим роль потенциала вытягивающего протоны из анода. Анод 4 выполнен из палладия в виде тонкой мембраны, имеющей электрический контакт с протоноводом 5, изготовленным из материала, представляющего собой суперионный проводник - проводник с высокой электропроводностью по ионам водорода. Ионы водорода - протоны находятся в аккумуляторе протонов 6, который имеет электрический контакт с протоноводом и находится под положительным по отношению к аноду потенциалом.

Принцип работы заявленного источника пучка ионов заключается в следующем: протоны из электролита, содержащегося в аккумулятора протонов 6, под действием электрического потенциала через электрический контакт с протоноводом 5, представляющий собой протонный гетеропереход, перемещаются в протоновод 5 в направлении анода 4. Продвигаясь через протоновод 5, протоны проходят через электрический контакт с анодом 4 и далее диффундируют через палладий к поверхности электрода, обращенной в вакуум. С поверхности анода под действием электрического потенциала сетки протоны эмитируются в вакуум в виде пучка протонов, а затем ускоряются под действием потенциала катода 2. Образовавшиеся в аккумуляторе протонов 6 избыточные электроны под действием электрического потенциала двигаются во внешнюю цепь.

В случае использования в аккумуляторе протонов материала, адсорбирующего водород, последний под действием сил поля на границе с суперионным материалом протоновода, который представляет собой протонный гетеропереход (ЖТФ, 2008, т.78, вып.2, стр.134-136), будет отдавать в него протоны, а электроны будут уходить во внешнюю цепь.

Для увеличения плотности тока протонного пучка может быть увеличена скорость диффузии протонов, для чего протоновод может быть подвергнут нагреву. Для этого на протоноводе имеется нагреватель 7 (см. фиг.2), при включении которого скорость вынужденной диффузии протонов может возрасти на несколько порядков, так как ее величина в суперионных соединениях растет экспоненциально с температурой, а температура нагрева при этом ограничена температурой разложения суперионного материала или температурой плавления палладия.

На фиг.1 представлено заявленное устройство где:

1 - вакуумная камера;

2 - катод;

3 - сетка;

4 - анод из палладия;

5 - протоновод;

6 - аккумулятор протонов.

На фиг.2 представлено заявленное устройство, дополнительно содержащее нагреватель, где обозначения 1-6 имеют вышеуказанные значения, а обозначение 7 - нагреватель.

1. Источник пучка протонов, включающий вакуумную камеру, катод, сетку, анод из палладия, протоновод, аккумулятор протонов, при этом протоновод изготовлен из материала с высокой электропроводностью по ионам водорода и соединяет аккумулятор протонов с анодом, на который подан отрицательный потенциал по отношению к аккумулятору протонов.

2. Источник по п.1, отличающийся тем, что аккумулятор протонов изготовлен из электролита, в котором присутствуют ионы водорода, или из композитного материала, содержащего соединение адсорбирующее водород.

3. Источник по п.1, отличающийся тем, что протоновод дополнительно содержит нагреватель.



 

Похожие патенты:

Изобретение относится к источникам ионов, применяемых в ускорителях заряженных частиц. .

Изобретение относится к источникам ионов, предназначенных для ускорителей заряженных частиц. .

Изобретение относится к источникам ионов, предназначенных для ускорителей заряженных частиц. .

Изобретение относится к плазменной технике, а именно к плазменным источникам, предназначенным для генерации интенсивных ионных пучков. .

Изобретение относится к области приборостроения, в частности к технике создания источников ионов, предназначенных для ускорителей заряженных частиц. .

Изобретение относится к источникам ионов, применяемым на ускорителях заряженных частиц. .

Изобретение относится к источникам заряженных частиц и применяется в области ускорительной техники. .

Изобретение относится к технологии электромагнитного разделения изотопов. .

Изобретение относится к технике получения пучков быстрых нейтральных частиц, в частности пучков нейтральных атомов, радикалов и молекул, и может быть использовано для распыления, травления и осаждения тонких пленок различных материалов

Изобретение относится к инжекционной технике, применяемой для создания мощных ионных пучков

Изобретение относится к технике получения пучков быстрых нейтральных частиц, в частности пучков нейтральных атомов, радикалов и молекул, и может быть использовано для очистки и полировки поверхностей объектов; для распыления, травления и осаждения тонких пленок различных материалов; для ассистирования процессов нанесения пленок инертными и химически активными частицами

Изобретение относится к генераторам ионов, предназначенным для ускорителей заряженных частиц

Изобретение относится к источникам ионов, предназначенным для ускорителей заряженных частиц. Заявленное изобретение характеризуется подачей на ускоряющий электрод ионно-оптической системы, размещенный между выходом пролетного канала и другим ускоряющим электродом, установленным в системе инжекции на выходе ионно-оптической системы, изменяющегося в процессе экстракции ионов электрического напряжения. Величина этого напряжения изменяется пропорционально изменению продольной составляющей импульса давления частиц, которое возникает в лазерной плазме в зоне, перед электродами системы инжекции. Предусмотрена также подача на ускоряющий электрод системы инжекции, установленный на выходе ионно-оптической системы, постоянного электрического напряжения для ускорения ионов. Техническим результатом является уменьшение разброса углового расхождения огибающей ионного пучка во время экстракции ионов, что способствует уменьшению величины эффективного эмиттанса этого пучка на выходе лазерного источника ионов с активной системой инжекции, и увеличение захвата ионов, генерируемых лазерными источниками ионов. 3 ил.

Изобретение относится к области ионно-плазменного распыления, в частности к ионно-лучевому распылению мишеней для получения тонкопленочных проводящих, полупроводниковых и диэлектрических покрытий на движущихся или вращающихся подложках большой площади. Устройство ионного распыления содержит размещенные в вакуумной камере протяженный вдоль продольной оси О источник ионов с замкнутым дрейфом электронов с вертикальной осью Z, систему подачи газа, протяженную мишень, подложкодержатель и источник постоянного напряжения. Источник ионов имеет электрически соединенные верхний и нижний магнитопроводы замкнутой формы с соответственно верхним и нижним полюсными наконечниками катода, которыми ограничена выходная щель О-образной формы с протяженными участками, параллельными продольной оси О, а также размещенные в ограниченном внутренними поверхностями верхнего и нижнего магнитопроводов объеме анод замкнутой формы и магнитную систему в виде группы равномерно размещенных на протяжении источника ионов постоянных магнитов, причем анод расположен напротив выходной щели. Источник постоянного напряжения выводом с положительным потенциалом соединен с анодом, а заземленным выводом с отрицательным потенциалом - с магнитопроводами и мишенью. Мишень и подложкодержатель противолежат друг другу и размещены со стороны нижнего и верхнего полюсных наконечников катода соответственно, причем подложкодержатель закреплен с возможностью движения. Мишень выполнена в виде цилиндра и закреплена с возможностью вращения вокруг своей оси, которая параллельна продольной оси источника ионов О и пересекает его вертикальную ось Z. Поверхности верхнего и нижнего полюсных наконечников катода и обращенная к ним поверхность анода выполнены параллельными друг другу с наклоном к мишени, либо поверхности верхнего и нижнего полюсных наконечников катода и обращенная к ним поверхность анода выполнены параллельными вертикальной оси Z, причем верхний полюсный наконечник катода выступает в сторону вертикальной оси Z относительно нижнего полюсного наконечника катода, при этом угол α между лежащими в одной плоскости и пересекающими поверхность мишени в общей точке средней линией выходной щели на ее протяженном участке и нормалью к поверхности мишени выбран из интервала 50÷70°. Технический результат - снижение расхода материала мишени при ее равномерном эффективном распылении. 2 н. и 8 з.п. ф-лы, 3 ил.

Изобретение относится к области ускорительной техники. Импульсный источник ионов гелия с холодными катодом и антикатодом состоит из соленоидальной катушки, надетой на немагнитную вакуумную камеру, внутри которой помещены катодный магнитный полюс с центральным углублением, катод из нержавеющей стали в виде плоского диска с центральным углублением в виде стакана, примыкающий к катодному магнитному полюсу, кольцевой анодный изолятор, анод в виде пустотелого цилиндра с кольцевой перемычкой в середине, выполненный из нержавеющей стали, антикатод в виде диска, выполненный из нержавеющей стали, по оси которого выполнено углубление с отверстием эмиссии в центре, своей выступающей частью вставленный в отверстие антикатодного магнитного полюса. На антикатоде выполнен кольцевой выступ, соосный с анодом и расположенный по направлению к аноду, диаметр выступа больше, чем диаметр стакана в катоде, но меньше, чем внутренний диаметр анода. Технический результат - стабилизации плотности разряда по оси отверстия ионной эмиссии. Устройство обеспечивает получение импульсного пучка ионов гелия при частоте импульсов 16-50 Гц, длительности импульсов синусоидальной формы по основанию импульса 100×10-6 с и амплитуде тока ионного пучка 80×10-3 А. 1 ил.

Изобретение относится к источникам газовых ионов, применяемых в ускорителях заряженных частиц. Дуоплазматронный источник газовых ионов состоит из соосно расположенных: катода, промежуточного электрода с отверстием и анода с отверстием эмиссии. Между анодом и промежуточным электродом размещен трубчатый металлический цилиндр, один торец которого закреплен на промежуточном электроде, а противоположный торец перекрыт диафрагмой с отверстием, площадь которого выбирают меньше площади внутренней поверхности трубчатого металлического цилиндра как отношение корня квадратного удвоенной массы электрона к корню квадратному массы иона рабочего газа. Технический результат - увеличение фазовой плотности тока инжектируемого ионного пучка. 1 ил.
Наверх