Шихта на основе циркона для получения плотной огнеупорной керамики

Изобретение относится к области получения огнеупорных и керамических изделий на основе циркона и может быть использовано в машиностроении, авиационной и электротехнической промышленности. Состав шихты содержит, мас.%: цирконовый концентрат 84-86 фракции 1-2 мкм с оксидом алюминия в количестве не более 0,2% и диоксид циркония, стабилизированный 5% оксида иттрия, 14-16 фракции 15-20 нм. Изобретение позволяет получить плотную мелкозернистую не содержащую стеклофазы керамику на основе циркона. 1 ил, 1 табл.

 

Изобретение относится к области получения огнеупорных и керамических изделий на основе циркона и может быть использовано в машиностроении, авиационной и электротехнической промышленности.

Известен огнеупорный материал, полученный из шихты на основе циркона и двуокиси циркония, содержащей от 5 до 40% циркона, следующего химического состава, мас.%: ZrO2+HfO2 83-96; SiO2 1,7-14; TiO2 0,2-3; Y2O3 0,4-5; Аl2O3 0,2-2,5; примеси <1 (Патент РФ №2201906, МПК С04В 35/484, С04В 5/43. Опубл. 2003.04.10).

Недостатком данной шихты является использование циркона, частицы которого имеют средний диаметр 4,7 мкм, а средний размер частиц двуокиси циркония составляет от 3,5 до 10 мкм, что не позволяет достичь высокой плотности материала. Введение в шихту добавок в виде TiO2 и Аl2O3 вызывает образование стеклофазы, что снижает огнеупорность цирконовой керамики.

Наиболее близким к заявляемому объекту является изобретение (Патент US №4888313, МПК С04В 35/48, С04В 35/66. Опубл. 1989.12.19), в котором огнеупорная керамика для работы с расплавленными металлами, состоящая из 80-99 мас.% диссоциированного циркона и 1-20 мас.% диоксида циркония, получена спеканием при температуре 1700°С.

Недостатком указанного изобретения является использование диссоциированного циркона, который представляет собой продукт, полученный путем обработки цирконового песка в плазменной печи, состоящий из аморфного SiO2, в который вкраплены кристаллы ZrO2.

Применение нестабилизированного диоксида циркония способствует образованию микротрещин в керамике, т.к. при охлаждении происходит полиморфное превращение тетрагонального диоксида циркония в моноклинный с увеличением объема до 5%, а при повторном нагреве будет происходить обратный переход с уменьшением объема. Размер частиц используемого порошка диоксида циркония составляет от 0,5 до 10 мкм, что не способствует равномерному распределению диоксида циркония в цирконовой матрице, следовательно, снижает прочность материала.

После спекания при температуре 1700-1710°С, что выше температуры диссоциации циркона, материал имеет фазовый состав, включая примерно 7,7 мас.% кварцевого стекла, примерно 69 мас.% циркона, и примерно 23,1 мас.% диоксида циркония. Диоксид циркония присутствует в виде агломератов диаметром приблизительно 12 мкм, состоящих из зерен диаметром примерно 3 микрона, а также в виде отдельных диспергированных зерен со средним размером приблизительно 3 мкм, что больше критического размера, при котором зерна диоксида циркония будут испытывать самопроизвольное полиморфное превращение из тетрагональной в моноклинную модификацию с увеличением объема, разрыхляя тем самым структуру материала и снижая его прочностные характеристики.

Технический результат предполагаемого изобретения заключается в повышении плотности огнеупорной керамики на основе циркона за счет исключения стеклофазы.

Указанная цель достигается тем, что шихта для получения плотной огнеупорной керамики, включающая цирконовый концентрат фракции 1-2 мкм с оксидом алюминия в количестве не более 0,2 мас.%, содержит диоксид циркония фракции 15-20 нм, стабилизированный оксидом иттрия в количестве 5 мас.%, при следующем соотношении компонентов, мас.%:

Цирконовый концентрат 84-86
Диоксид циркония 14-16

Введение диоксида циркония обосновано тем, что данное соединение не вступает во взаимодействие с цирконом с образованием легкоплавких соединений и не способствует его разложению при высоких температурах. Также введение диоксида циркония в керамические материалы позволяет повысить их прочность и вязкость разрушения. Оксид иттрия, используемый в качестве стабилизирующей добавки для сохранения диоксида циркония в тетрагональной модификации, находится в виде твердого раствора замещения и не оказывает влияние на образование стеклофазы в отличие от оксидов магния и кальция, которые также применяются для стабилизации диоксида циркония, но способствуют термической диссоциации циркона.

Пределы содержания диоксида циркония в шихте выбраны из следующих соображений. При содержании диоксида циркония менее 14% керамика не обладает достаточной плотностью, а введение в шихту диоксида циркония в количестве, большем 16%, приводит к увеличению пористости керамики. Известно, что добавки наноразмерных порошков способствуют уплотнению керамики и снижению температуры при спекании.

Содержание оксида алюминия в цирконовом концентрате не более 0,2 мас.% вызвано тем, что наличие оксида алюминия способствует снижению температуры диссоциации циркона.

На чертеже представлена дифрактограмма керамического материала после спекания.

Изготовление изделий из шихты осуществляют следующим образом.

В качестве исходного материала используют циркон марки Zircon Standard Grade (Possen Erzconter), содержащий примеси в количестве, мас.%: 0,18 Аl2О3, 0,2 Fе2O3, 0,25 TiO2, 0,1 СаО, 0,03 MgO, 0,002 Сr2O3, 0,14 P2O3. Удельная поверхность порошка циркона, определенная методом БЭТ, составляет 0,59 м2/г.

Применяемый диоксид циркония, стабилизированный 5 мас.% оксида иттрия, имеет удельную поверхность 47,5 м2/г, порошок состоит практически из одной тетрагональной фазы и небольшого количества моноклинной фазы (следы).

Смешивание компонентов шихты проводят в планетарной мельнице САНД в жидкой среде, соотношение массы порошка и мелющих тел составляет 1:2. После сушки порошок имеет удельную поверхность 13,7 м2/г. Формование заготовок проводят методом полусухого прессования в стальной пресс-форме при давлении 250 МПа с добавлением 4% водного р-ра ПВС, спекание проводят на воздухе в электропечи сопротивления при температуре 1600°С.

Полученный керамический материал характеризуется остаточной пористостью не более 10%. Дифрактограмма керамического материала после спекания показывает, что фазовый состав материала состоит из циркона и тетрагонального диоксида циркония, следов других соединений не обнаружено. Циркон присутствует в виде зерен со средним размером 1-2 мкм. Средний размер зерен диоксида циркония составляет 0,5 мкм.

В таблице приведены составы шихты и свойства изделий, полученных по описанной технологии.

Шихта Состав шихты, мас.% Плотность, г/см2
Цирконовый концентрат Диоксид циркония
1 95 5 3,8
2 90 10 3,88
3 85 15 4,05
4 80 20 3,89

Из таблицы видно, что наибольшая плотность керамического материала достигается при введении в шихту 15 мас.% ZrO2. При содержании диоксида циркония меньше или больше указанного количества происходит снижение плотности материала.

Таким образом, изобретение позволяет получить плотную огнеупорную мелкозернистую керамику на основе циркона, не содержащую стеклофазу.

Шихта на основе циркона для получения плотной огнеупорной керамики, содержащая циркон и диоксид циркония, отличающаяся тем, что содержит цирконовый концентрат фракции 1-2 мкм с оксидом алюминия в количестве не более 0,2 мас.% и диоксид циркония фракции 15-20 нм, стабилизированный оксидом иттрия в количестве 5 мас.%, при следующем соотношении компонентов, мас.%:

Цирконовый концентрат 84-86
Диоксид циркония 14-16


 

Похожие патенты:
Изобретение относится к композитной мишени в форме стержня, образованной из керамических порошков и предназначенной для испарения под действием электронного луча, содержащей диоксид циркония и по меньшей мере один стабилизатор диоксида циркония.

Изобретение относится к способу изготовления керамики на основе диоксида циркония, стабилизированного оксидом иттрия, с небольшими добавками фторидов натрия и калия, получаемого химическим осаждением из растворов солей.

Изобретение относится к способам изготовления высокоплотной керамики для твердого электролита на основе диоксида циркония с небольшими добавками оксида алюминия, получаемого химическим осаждением из растворов хлористых солей циркония и алюминия.

Изобретение относится к порошковой металлургии, а более точно касается способов получения циркониевой керамики, и может быть использовано в производстве высокопрочных конструктивных и инструментальных материалов и изделий, например волочильных инструментов.

Изобретение относится к композиционному материалу на основе твердого раствора оксида железа и диоксида циркония, применяемому для изготовления высокопрочных керамических изделий, и способу его изготовления.

Изобретение относится к области получения конструкционной керамики, например инструмента для обработки металлов давлением, деталей подшипников, имплантантов для фиксации зубных коронок.

Изобретение относится к огнеупорным мат риапам и может быть использовано при изготовлении высокоогнеупорных изделий, Haiotirv8i. .

Изобретение относится к области электротехники, в частности к изделиям, предназначенным для работы в датчиках контроля сжигания топлива в автомобильных двигателях.

Изобретение относится к производству огнеупорных материалов и может быть, использовано дли нанесения пористых покрытий на твердые электролиты, служащие чувствительными элементами датчиков высокотемпературных газоанализаторов.

Изобретение относится к получению огнеупорных изделий на основе оксида циркония, работающих в условиях высоких температур с ее резкими перепадами, и направлено на повышение устойчивости к расплаву стали и термостойкости при сохранении механической прочности.

Изобретение относится к технологии оптических материалов и может быть использовано в интегральной оптике. .
Изобретение относится к области технологии изготовления наноструктур и может быть использовано при получении новых материалов для микро- и оптоэлектроники, светодиодных ламп, силовой электроники и других областей полупроводниковой техники.

Изобретение относится к способу изготовления наноразмерных металлических мембран. .

Изобретение относится к области микроэлектроники, а именно к технологии изготовления КМОП-транзисторов, в частности к способам управления напряжением срабатывания полевого КМОП транзистора.

Изобретение относится к технологии получения длинных ориентированных жгутов углеродных нановолокон и может быть использовано при создании высокопрочных комплексных углеродных нитей и в качестве компонента композиционных материалов, применяемых в авто- и/или авиастроении.

Изобретение относится к области координационной химии, включая физикохимию наноструктур и коллоидных систем, в частности к получению магнитовосприимчивых углеродметаллсодержащих наноструктур путем дегидрохлорирования или деацетилирования в присутствии металлов с последующими стадиями карбонизации соответствующих полимерных веществ и частичным восстановлением металлов из их соединений.

Изобретение относится к микро- и нанотехнологии и может быть использовано для неразрушающего исследования топологии интегральных микросхем. .

Изобретение относится к области химии и может быть использовано при получении ультрадисперсного порошка оксида алюминия, используемого в солнцезащитных составах.
Изобретение относится к области строительных материалов и может быть использовано при производстве ячеистого неавтоклавного газобетона, а также для изготовления штучных изделий и монолитов
Наверх