Полихлорцинкаты редкоземельных элементов

Изобретение может быть использовано в химической промышленности. Полихлорцинкаты редкоземельных элементов (РЗЭ) получены взаимодействием хлоридов редкоземельных элементов с хлоридом цинка в среде диэтилового эфира и соответствуют общей химической формуле nMCl3·ZnCl3·mEt2O, где М=РЗЭ, n=1-7, m=1-13. Указанные химические соединения пригодны для использования в качестве реагентов для очистки нефтепродуктов и природного газа от меркаптанов и сероводорода, катализаторов в процессах хлорметилирования и алкилирования ароматических углеводородов, исходных веществ при получении гидридов металлов, 6 табл.

 

Изобретение относится к получению новых соединений - полихлорцинкаты редкоземельных элементов (РЗЭ) в среде диэтилового эфира общей формулы

nMCl3·ZnCl2·mEt2O,

где М=РЗЭ, n=1-7, m=1-13,

которые могут быть использованы в качестве реагентов для очистки нефтепродуктов и природного газа от сероводорода и меркаптанов, катализаторов в процессах хлорметилирования и алкилирования ароматических углеводородов, исходных веществ при получении гидридов металлов.

В литературе отсутствуют сведения о хлоридных комплексах редкоземельных элементов с хлоридом цинка, получаемых в среде диэтилового эфира.

Задачей настоящего изобретения является получение новых соединений - полихлорцинкатов редкоземельных элементов в среде диэтилового эфира общей формулы nMCl3·ZnCl2·mEt2O (где М=РЗЭ, n=1-7, m=1-13), которые могут быть использованы в качестве реагентов для очистки нефтепродуктов и природного газа от сероводорода и меркаптанов, катализаторов в процессах хлорметилирования и алкилирования ароматических углеводородов, исходных веществ при получении гидридов металлов.

Поставленная задача достигается тем, что для получения вышеназванных соединений проводят взаимодействие хлоридов цинка и редкоземельных элементов в среде диэтилового эфира.

Типичный опыт заключается в следующем. К взвеси MCl2 в диэтиловом эфире добавляли эфират хлорида цинка (ZnCl2·Et2O) при обычном перемешивании и общим объемом эфира 50 мл.

Взаимодействие реагентов проводили в трехгорлой колбе вместимостью 250 мл при комнатной температуре и обычном перемешивании в течение 2 часов по схеме

nMCl3+ZnCl28 nMCl3·ZnCl2·mEt2O

Признаком взаимодействия служило небольшое разогревание (до 30°С) реакционной массы, при этом наблюдали уменьшение объема осадка и появление в растворе ионов редкоземельных элементов, хлориды которых нерастворимы в диэтиловом эфире. Процесс вели до постоянства элементов в растворе. Из прозрачного послереакционного раствора путем испарения 3/4 части растворителя в вакууме при 25°С с последующим вымораживанием выделяли соединения брутто-состава: nМСl3·ZnCl2·mEt2O (где М=РЗЭ, n=1-7, m=1-13).

В таблице 1 приведены результаты опытов взаимодействия хлоридов редкоземельных элементов с хлоридом цинка в среде диэтилового эфира. Полученные соединения представляют собой кристаллические порошки, со временем расплывающиеся на воздухе, поэтому рекомендовано хранить их в эксикаторе или закрытой посуде. В таблице 2 приведены физико-химические характеристики полученных соединений.

Выделенные из раствора комплексные соединения реакционноспособны и легко подвержены диссоциации в растворе при обработке большим количеством диэтилового эфира. Полученные соединения стабилизированы молекулами диэтилового эфира, которые в комплексе координированы по донорно-акцепторному механизму и относятся к оксониевым соединениям.

Новые соединения были идентифицированы совокупностью физико-химических методов: рентгенографией, термографией, ИК-спектроскопией, хроматографией и методом химического анализа, построены изотермы растворимости. Установлено, что полихлорцинкаты редкоземельных элементов в среде диэтилового эфира отвечают индивидуальным соединениям.

При изучении растворимости в тройных системах nMCl3-ZnCl2-mEt2O, 25°С (где М=РЗЭ, n=1-7, m=1-13), обнаружены области кристаллизации следующих соединений: 2YCl3·ZnCl2·2Et2O, 5YCl3·ZnCl2·3Et2O, 5CeCl3·ZnCl2·6Et2O, 5NdCl3·ZnCl2·6Et2O, EuCl3·ZnCl2·Et2O, 2GdCl3·ZnCl2·3Et2O, 5DyCl3·ZnCl2·2Et2O, 2DyCl3·ZnCl2·2Et2O, ErCl3·ZnCl2·3Et2O, 7HoCl3·ZnCl2·3Et2O, HoCl3·ZnCl2·3Et2O, 2LuCl3·ZnCl2·6Et2O.

При изучении термической устойчивости эфиратов полихлорцинкатов РЗЭ установлено, что термические кривые имеют сложный характер разложения, отличный от составляющих: ZnCl2 и МСl3, где М=РЗЭ. Обнаружено, что частичная десольватация происходит при температуре 50-200°С, а разложение комплексов происходит ступенчато, с предварительным плавлением. Анализ термоэффектов показывает, что комплексы редкоземельных элементов в среде диэтилового эфира являются устойчивыми.

Полученные экспериментальные данные по термической устойчивости полихлорцинкатов РЗЭ в среде диэтилового эфира позволяют предположить следующие схемы их распада на примере эфирата полихлорцинката лютеция:

I LuCl3·ZnCl2·8Et2O→LuCl3·ZnCl2+8Et2O↑

II LuCl3·ZnCl2→LuCl3+ZnCl2

Рентгенографические исследования исходных веществ ZnCl2, МСl3 (где М=РЗЭ) и полихлорцинкатов РЗЭ в среде диэтилового эфира показывают, что наборы рефлексов отражения отличаются от составляющих. Исследование полученных соединений методом ИК-спектроскопии установило, что колебательные частоты полихлорцинкатов РЗЭ в среде диэтилового эфира отличны от спектров составляющих хлоридов металлов. Для полихлорцинкатов РЗЭ в среде диэтилового эфира обнаружена новая полоса поглощения, вызванная колебаниями М-O связи в области 200-500 см-1, а также изменения частот валентных колебаний М-Сl и С-О-С связей.

Полихлорцинкаты брутто-формулы nMCl3·ZnCl2·mEt2O, где М=РЗЭ, n=1-7, m=1-13, нашли применение в качестве реагентов для очистки нефти и природного газа от сероводорода и меркаптанов. Например:

HoCl3·ZnCl2·3Et2O+3H2S=HoCl3·ZnCl2·3H2S+3Et2O↑

HoCl3·ZnCl2·3Et2O+3RSH=HoCl3·ZnCl2·3RSH+3Et2O↑

Реакцию проводят при температуре 25±5°С при мольном соотношении реагентов (nMCl2·ZnCl2·mEt2O): mH2S (mRSH)=1:m, где М=РЗЭ, n=1-7, m=1-13; R - углеводородный радикал.

В таблице 3 приведены условия протекания взаимодействия комплексных соединений с молекулами сероводорода и меркаптанов на примере метил-, этил- и пропилмеркаптанов. Так, например, использование в качестве реагента эфирата полихлорцинката неодима при вышеназванных условиях обеспечивает связывание сероводорода до 86,9%, метил-, этил- и пропилмеркаптанов до 84,1%, 81,8% и 78,8% соответственно.

Для очистки газов от сероводорода и меркаптанов используют фильтры, содержащие в себе гранулы, состоящие из мелкодисперсных комплексных соединений на субстрате (оксидах металлов d-элементов). Поверхность гранулы реагента эффективно сорбирует из потока газа сероводород и меркаптаны. Газы, не содержащие в своем составе соединений серы, на поверхности гранул не задерживаются и с комплексным соединением не реагируют. Сероводород и меркаптаны, проходя через фильтр, в процессе комплексообразования активно конкурируют с кислородсодержащими соединениями, вытесняя их из комплексного соединения.

Важным направлением очистного действия комплексными соединениями цинка в среде диэтилового эфира заключается в связывании или переработке сернистых соединений дистиллята. Так, сероводород, почти всегда присутствующий в крекинг-дистилляте, реагирует с соединениями цинка с образованием соответствующих комплексных соединений. Очистка нефтяных дистиллятов необходима перед проведением каталитических процессов дегидрирования и парциального окисления, т.к. сера и ее соединения являются одними из самых сильных ядов, отравляющих поверхность катализаторов.

Кроме того, при наличии небольших количеств воды в дистилляте и даже в водных растворах вышеназванные соединения будут давать также комплексные соединения типа аквакислот, способных диссоциировать с выделением иона водорода, например

GdCl3·ZnCl2·2Et2O+Н2O↔[ZnCl2OH]H+[GdCl3OH]H+2Et2O↑.

Эти аквакислоты имеют сильные кислотные свойства, но при разбавлении водой разрушаются. Зато в концентрированных водных растворах, а также в твердом виде с содержанием небольших количеств влаги, эти аквакислоты реагируют подобно минеральной кислоте, например серной, обладая к тому же рядом преимуществ перед ней. Так, известную в литературе очистку дистиллята серной кислотой, во избежание разрушения отдельных ценных частей дистиллята, приходится вести при низких температурах. Очистку же комплексными соединениями цинка можно проводить при повышенных температурах, усиливая тем самым ее эффективность.

Полихлорцинкаты редкоземельных элементов в среде диэтилового эфира используют в качестве катализаторов в процессах хлорметилирования и алкилирования ароматических углеводородов.

Так, непредельные углеводороды, входящие в состав нефти, легко конденсируются с бензолом и его гомологами в присутствии эфиратов полихлорцинкатов редкоземельных элементов, при этом образуются гомологи бензола предельного характера, например, с амиленом - амилбензол

С6Н65Н10 C6H5-C5H11

В таблице 4 приведены условия проведения данной реакции. Так, использование эфирата полихлорцинката церия, взятого в количестве 5% от массы бензола, приводит к образованию хлористого бензила с выходом 65%. Увеличение его содержания до 10% и более приводит к повышению выхода продукта до 75%. Таким образом, наиболее оптимальным количеством используемого катализатора является его 10%-ное содержание, взятое от массы бензола.

При взаимодействии бензола с муравьиным альдегидом в присутствии хлороводорода при использовании в качестве катализатора эфиратов полихлорцинкатов редкоземельных элементов получают хлористый бензил:

C6H6+CH2O+HClH2O+С6H5-CH2Cl

Реакцию проводят при 60°С, пропуская хлористый водород через смесь бензола, параформальдегида и эфиратов полихлорцинкатов редкоземельных элементов до прекращения абсорбции газов. Значение этой реакции велико, особенно если учитывать особенность легкого превращения группы -CH2Cl в другие, например, в группы -СН3, -CH2CN, -CHO, -CH2NH2, -СН2ОН.

В таблице 5 приведены условия протекания данной реакции. Так, использование в качестве катализатора, например, эфирата полихлорцинката лютеция, взятого в количестве 10% от массы бензола, позволяет получить конечный продукт - хлористый бензил с выходом 88%; применение эфирата полихлорцинката европия - 95% С6Н5-СН2Сl.

Кроме того, полихлорцинкаты РЗЭ в среде диэтилового эфира используют как исходные вещества для получения гидридных соединений металлов, например

5CeCl3·ZnCl2·6Et2O+17LiAlH4→5Се(AlН4)3+ZnH2+2AlН3+17LiCl+6Et2O↑

Реакцию проводят при температуре 25°С в среде диэтилового эфира.

В таблице 6 приведены условия проведения данной реакции. Согласно приведенным данным при использовании, например, эфиратов полихлорцинкатов неодима и европия выход гидридов металлов составляет 75% и 85% соответственно.

Таким образом, по совокупности физико-химических свойств полученные соединения - полихлорцинкаты редкоземельных элементов в среде диэтилового эфира - являются новыми соединениями.

Таблица 3
Условия взаимодействия эфиратов полихлорцинкатов редкоземельных элементов с серосодержащими соединениями
№ опыта Формула соединения nMCl3·ZnCl2·mEt2O (КС) Условия проведения опыта Получено, г (%) nMCl3·ZnCl2·mH2S Условия проведения опыта Получено, г (%) nMCl3·ZnCl2·mRSH
Взято, г (моль) Взято, г (моль)
КС H2S КС RSH
1 5CeCl3·ZnCl2·6Et2O 453,2 (0,25) 111(1,5) 328,0 (83,4) 453,2 (0,25) 72 (1,5) ММ 330,0 (79,7)
2 5CeCl3·ZnCl2·6Et2O - - - 453,2 (0,25) 93 (1,5) ЭМ 336,0 (77,2)
3 5CeCl3·ZnCl2·6Et2O - - - 453,2 (0,25) 114(1,5) ПМ 343,5 (75,3)
4 NdCl3·ZnCl13Et2O 337,3 (0,25) 110,5 (3,25) 180,0 (86,9) 337,3 (0,25) 156 (3,25) ММ 212,5 (84,1)
5 NdCl3·ZnCl2·13Et2O - - - 337,3 (0,25) 201,5 (3,25) ЭМ 244,0 (81,8)
6 NdCl3·ZnCl2·13Et2O - - - 337,3 (0,25) 247 (3,25) ПМ 270,9 (78,8)
7 EuCl3·ZnCl2·3Et2O 308,5 (0,5) 111,0 (1,5) 210,0 (84,5) 308,5 (0,5) 72(1,5) ММ 220,5 (81,8)
8 EuCl3·ZnCl2·3Et2O - - - 308,5 (0,5) 93 (1,5) ЭМ 228,0 (78,5)
9 EuCl3·ZnCl2·3Et2O - - - 308,5 (0,5) 114(1,5) ПМ 239,2 (76,8)
10 LuCl3·ZnCl2·8Et2O 504,9 (0,5) 136(4) 276,0 (80) 504,9 (0,5) 192(4) MM 305,2 (76,1)
11 LuCl3·ZnCl2·8Et2O - - - 504,9 (0,5) 248 (4) ЭМ 335,0 (73,3)
12 LuCl3·ZnCl2·8Et2O - - - 504,9 (0,5) 304 (4) ПМ 364,7 (71,1)
Примечание:
ММ - метилмеркаптан
ЭМ - этилмеркаптан
ПМ - пропилмеркаптан
Таблица 4
Условия получения амилбензола с участием эфиратов полихлорцинкатов редкоземельных элементов
№ опыта Условия проведения реакции Получено С6Н55Н11, г (%)
Наименование соединения Взято, г (моль) nMCl3·ZnCl2·mEt2O,
С6Н6 C5H10 г (моль) % (по бензолу)
1 5CeCl3·ZnCl2·6Et2O 78 (1) 70 (1) 3,9 (0,002) 5 96,2 (65)
2 5CeCl3·ZnCl2·6Et2O 78 (1) 70 (1) 7,8 (0,004) 10 111 (75)
3 5CeCl3·ZnCl2·6Et2O 78 (1) 70 (1) 11,7 (0,006) 15 111 (75)
4 NdCl3·ZnCl2·13Et2O 78 (1) 70 (1) 3,9 (0,006) 5 115,4 (78)
5 NdCl3·ZnCl2·13Et2O 78 (1) 70 (1) 7,8 (0,012) 10 133,2 (90)
6 NdCl3·ZnCl2·13Et2O 78 (1) 70 (1) 11,7 (0,018) 15 133,2 (90)
7 LuCl3·ZnCl2·8Et2O 78 (1) 70 (1) 3,9 (0,004) 5 118,4 (80)
8 LuCl3·ZnCl2·8Et2O 78 (1) 70 (1) 7,8 (0,008) 10 136,2 (92)
9 LuCl3·ZnCl2·8Et2O 78 (1) 70 (1) 11,7 (0,011) 15 136,2 (92)
10 EuCl3·ZnCl2·3Et2O 78 (1) 70 (1) 3,9 (0,006) 5 118,4 (80)
11 EuCl3·ZnCl2·3Et2O 78 (1) 70 (1) 7,8 (0,013) 10 140,6 (95)
12 EuCl3·ZnCl2·3Et2O 78 (1) 70 (1) 11,7 (0,019) 15 140,6 (95)
Таблица 5
Условия получения хлористого бензила с участием эфиратов полихлорцинкатов редкоземельных элементов
№ опыта Условия проведения опыта Получено С6Н5СН2Cl, г (%)
Наименование соединения Взято, г (моль) nMCl3·ZnCl2·mEt2O
С6Н6 HCl CH2O г (моль) % (по бензолу)
1 5CeCl3·ZnCl2·6Et2O 78 (1) 36,5 (1) 38 (1) 3,9 (0,002) 5 88,5 (70)
2 5CeCl3·ZnCl2·6Et2O 78 (1) 36,5 (1) 38 (1) 7,8 (0,004) 10 107,5 (85)
3 5CeCl3·ZnCl2·6Et2O 78 (1) 36,5 (1) 38 (1) 11,7 (0,006) 15 107,5 (85)
4 EuCl3·ZnCl2·3Et2O 78 (1) 36,5 (1) 38 (1) 3,9 (0,006) 5 103,7 (82)
5 EuCl3·ZnCl2·3Et2O 78 (1) 36,5 (1) 38 (1) 7,8 (0,012) 10 120,2 (95)
6 EuCl3·ZnCl2·3Et2O 78 (1) 36,5 (1) 38 (1) 11,7 (0,019) 15 120,2 (95)
7 NdCl3·ZnCl2·13Et2O 78 (1) 36,5 (1) 38 (1) 3,9 (0,006) 5 98,7 (78)
8 NdCl3·ZnCl2·13Et2O 78 (1) 36,5 (1) 38 (1) 7,8 (0,012) 10 113,8 (90)
9 NdCl3·ZnCl2·13Et2O 78 (1) 36,5 (1) 38 (1) 11,7 (0,018) 15 113,8 (90)
10 LuCl3·ZnCl2·8Et2O 78 (1) 36,5 (1) 38 (1) 3,9 (0,004) 5 94,9 (75)
11 LuCl3·ZnCl2·8Et2O 78 (1) 36,5 (1) 38 (1) 7,8 (0,008) 10 111,3 (88)
12 LuCl3·ZnCl2·8Et2O 78 (1) 36,5 (1) 38 (1) 11,7 (0,011) 15 111,3 (88)
Таблица 6
Условия получения гидридов металлов с участием полихлорцинкатов редкоземельных элементов в среде диэтилового эфира, Et2O=(C2H5)2O
№ опыта Условия проведения опыта Получено, г (%)
Наименование соединения Взято, г (моль) AlH3 ZnH2
nMCl3·ZnCl2·mEt2O LiAlH4
1 5CeCl3·ZnCl2·6Et2O 1812,8 (1) 646 (17) 42,0 (70) 47,2 (70)
2 5CeCl3·ZnCl2·6Et2O 906,4 (0,5) 323 (8,5) 21,0 (70) 21,0 (70)
3 NdCl3·ZnCl2·13Et2O 1349,1 (1) 190 (5) 45,0 (75) 50,6 (75)
4 NdCl3·ZnCl2·13Et2O 674,6 (0,5) 95 (2,5) 22,5 (75) 25,3 (75)
5 EuCl3·ZnCl2·3Et2O 616,8 (1) 190 (5) 51,0 (85) 57,3 (85)
6 EuCl3·ZnCl2·3Et2O 308,4 (0,5) 95 (2,5) 25,5 (85) 28,6 (85)
7 LuCl3·ZnCl2·8Et2O 1009,8 (1) 190 (5) 48,0 (80) 53,9 (80)
8 LuCl3·ZnCl2·8Et2O 504,9 (0,5) 95 (2,5) 24,0 (80) 27,0 (80)

Полихлорцинкаты редкоземельных элементов (РЗЭ) в среде диэтилового эфира общей формулы
nMCl3·ZnCl2·mEt2O,
где М=РЗЭ, n=1-7, m=1-13,
полученные взаимодействием хлоридов редкоземельных элементов с хлоридом цинка в среде диэтилового эфира, в качестве реагентов для очистки нефтепродуктов и природного газа от сероводорода, катализаторов в процессах хлорметилирования и алкилирования ароматических углеводородов, исходных веществ при получении гидридов металлов.



 

Похожие патенты:

Изобретение относится к получению новых соединений - полихлорцинкатов металлов IIА группы в среде диэтилового эфира общей формулыnMCl2·ZnCl2 ·mEt2O, в которойпри M=Mg n=1, m=2;при М=Са, Sr n=1, m=4;при М=Ва n=2, m=6,которые могут быть использованы в качестве реагентов для очистки нефтепродуктов и природного газа от сероводорода и меркаптанов, катализаторов в процессах хлорметилирования и алкилировалия ароматических углеводородов, исходных веществ при получении гидридов металлов.

Изобретение относится к получению нового соединения - трихлорцинката лития в среде диэтилового эфира LiCl·ZnCl 2·Et2O, которое может быть использовано в качестве реагента для очистки нефтепродуктов и природного газа от сероводорода и меркаптанов, катализатора в процессах хлорметилирования ароматических углеводородов, исходного вещества при получении гидридов металлов.

Изобретение относится к технологии получения неорганических соединений, в частности раствора бромида цинка, и может быть использовано в йодобромной промышленности для получения основного компонента тяжелой буровой жидкости с удельным весом не менее 2,0 кг/дм3.

Изобретение относится к способу получения хлористого цинка и создает возможность переработки отходов производства перметрина, содержащих цинк, на товарный продукт при одновременном упрощении процесса.

Изобретение относится к электролитическим способам получения неорганических соединений, в частности соединений неодима. .

Изобретение относится к разработке неорганических красителей, а именно неорганических пигментов, в частности к составам для окрашивания на основе сульфидов лантана, олова и кальция, которые могут быть использованы в лакокрасочной промышленности, производстве пластмасс, керамики, строительных материалов.
Изобретение относится к области неорганической химии, в частности к разработке синтеза сверхпроводников на основе купратов редкоземельного элемента и бария (LnВа2Сu3 O7- , где Ln=Sm, Eu, Gd, Y, Tb, Dy, Но, Er).
Изобретение относится к способу получения карбоксилатов редкоземельных элементов (РЗЭ), которые могут быть использованы в качестве компонентов катализаторов для производства диеновых каучуков с высоким содержанием 1,4-цис-звеньев.
Изобретение относится к способу переработки отходов производства постоянных магнитов. .
Изобретение относится к способам выделения концентрата лантаноидов из экстракционной фторсодержащей фосфорной кислоты, получаемой в дигидратном процессе переработки апатитового концентрата, и может быть использовано в химической и сопутствующих отраслях промышленности.
Изобретение относится к области химической технологии неорганических веществ и может быть использовано в тех случаях, когда необходимо получить редкоземельные элементы (РЗЭ), очищенные от примесей.

Изобретение относится к фосфиноксидам, которые можно применять в качестве хелатирующих агентов для экстракции лантанидов из кислых водных растворов, и может применяться для экологического мониторинга сточных вод в районах переработки и захоронения радиоактивных отходов.

Изобретение относится к области химии, в частности к способам получения синтетических слоистых гидроксидов. .

Изобретение относится к химии фуллеренов, а именно к методам получения высокоэффективных магниторелаксационных систем для ЯМР-томографии на основе водорастворимых эндометаллофуллеренов
Наверх