Способ термомеханической обработки сплавов системы mg-al-zn

Изобретение относится к обработке сплавов системы Mg-Al-Zn и может быть использовано в авиастроении, ракетной технике, автомобилестроении. Способ включает прямое прессование сплава при температуре 300-450°С со степенью вытяжки 7-18 и равноканальное угловое прессование (РКУП) сплава в четыре прохода при температуре 220-260°С с истинной степенью деформации ε=4,5 по схеме: первые два прохода по маршруту С, третий проход по маршруту Вс и четвертый проход по маршруту С. Перед РКУП и после него осуществляют отжиг сплава при температуре 345°С в течение 1 часа с охлаждением на воздухе. Способ позволяет повысить пластичность и деформируемость магниевых сплавов при комнатной температуре.

 

Изобретение относится к области металлургии, в частности к термомеханической обработке магниевых сплавов, и может быть использовано в авиастроении для изготовления различных деталей самолетов и вертолетов, например колес и вилок шасси, различных рычагов, корпусов приборов; в ракетной технике для изготовления корпусов ракет, обтекателей, топливных и кислородных баков; в конструкциях автомобилей, особенно гоночных; в атомных реакторах для изготовления оболочек тепловыводящих элементов.

Магниевые сплавы значительно легче алюминиевых, хорошо поглощают механические вибрации, что и определило их использование в качестве конструкционных материалов в авиации, ракетной технике и транспорте.

Магниевые сплавы имеют гексагональную структуру, поэтому при высокой удельной прочности они обладают низкой пластичностью и деформируемостью, особенно при низких температурах, близких к комнатной. В связи с чем при обработке давлением магниевых сплавов возникают существенные трудности.

Повышение пластичности и деформируемости при сохранении высокого уровня прочности является самой актуальной проблемой при разработке сплавов на магниевой основе.

Известны способы обработки магниевых сплавов, повышающие их деформируемость, в которых после теплой и холодной обработки давлением проводят термообработку.

Так в патенте Японии № 2004-115863, опубликованном 15.04.2004, в процессе получения тонких листов из магниевых сплавов системы Mg-Al-Zn-Мn после холодной прокатки листы подвергают термообработке при температурах 200÷450°С.

Из патента Японии № 2005-281848, опубликованном 13.10.2005, известен способ обработки магниевых сплавов, включающий термообработку при 170÷450°С после холодной прокатки.

Недостатком известных способов является использование лишь одного механизма повышения комплекса свойств сплавов - создание полигонизованной дислокационной структуры, что ограничивает возможность одновременного улучшения прочностных и пластических характеристик. Сплавы, обработанные по указанным выше технологиям, обладают недостаточной пластичностью и деформируемостью при комнатной температуре.

Физико-механические свойства сплавов могут быть заметно улучшены созданием в них различными методами рассеянной базисной текстуры и ультрамелкозернистой структуры. К таким методам относится интенсивная пластическая деформация, позволяющая в условиях высоких давлений измельчать микроструктуру в объемных заготовках до ультрамелкозернистой и значительно ослаблять остроту базисной компоненты текстуры.

Так известен способ обработки магниевых сплавов при котором предварительно нагретые до 200-350°С слитки подвергают равноканальному угловому прессованию (РКУП) в несколько проходов с повторным нагревом при 230-350°С перед каждым следующим проходом [KR 102003 0060830, опубликован 01.09.2003].

Также известен способ термомеханической обработки сплавов системы Mg-Al-Zn, включающий предварительный нагрев отливки до температуры 280-350°С и проведение при указанной температуре РКУП за шесть и более проходов с повторным нагревом между проходами при 280-350°С, при этом образец после каждого прохода поворачивается вокруг направления прессования [KR 102003 0060829, опубликован 01.09.2003].

Недостатком этих способов является использование повторных нагревов при 230-350°С перед каждым следующим проходом РКУП, что приводит к заметному росту зерна. Это в совокупности приводит к повышению пластичности при более низких температурах деформации на последующих проходах. Однако уровень прочности при этом уменьшается при практически неизменном пределе текучести.

Также известен способ обработки магниевых сплавов, включающий прямое прессование сплава (экструзию) при температуре 300°С и равноканальное угловое прессование (РКУП) сплава при температуре 200°С в четыре прохода по маршруту Вс [статья Ю. Эстрин и др. Повышение свойств магниевых сплавов равноканальным угловым прессованием. Металловедение и термическая обработка металлов, №11, 2006, с.35-38], который принят в качестве наиболее близкого к предложенному изобретению. Проведение РКУП при температуре 200°С в четыре прохода по маршруту Вс при угле пересечения каналов 90° позволяет измельчить зерно до субмикроскопического уровня. Это приводит к повышению пластичности при растяжении при практически неизменном пределе текучести и пределе прочности сплава.

Задача, на решение которой направлено настоящее изобретение, заключается в создании способа обработки позволяющего получить сплавы системы Mg-Al-Zn, обладающие одновременно достаточно высокими уровнями пластичности и прочности, и как, следствие, повышенным уровнем деформируемости данного материала.

Техническим результатом изобретения является повышение прочности, пластичности и деформируемости сплавов системы Mg-Al-Zn.

Технический результат достигается тем, что в способе термомеханической обработки сплавов системы Mg-Al-Zn, включающем прямое прессование сплава и равноканальное угловое прессование (РКУП) сплава в четыре прохода согласно изобретению, перед РКУП и после него осуществляют отжиг сплава при температуре 345°С в течение 1 часа с охлаждением на воздухе, прямое прессование сплава ведут при температуре 300-450°С со степенью вытяжки 7-18, а РКУП осуществляют при температуре 220-260°С с истинной степенью деформации ε=4,5 по схеме: первые два прохода по маршруту С, третий проход по маршруту Вс и четвертый проход по маршруту С.

Маршрут С представляет собой поворот образца на 180° вокруг оси, перпендикулярной направлению прессования.

Маршрут Вс представляет собой поворот образца на 90° вокруг оси прессования.

Сущность изобретения заключается в следующем.

Прямое прессование сплава приводит к повышению прочности за счет образования субзеренной полигонизованной структуры и острой аксиальной двухкомпонентной текстуры <1010> + <0001>, но пластичность при этом резко снижается. Экспериментально установлено, что максимальное упрочнение при оптимальном снижении пластичности достигается при проведении прессования в заявленных режимах. При температуре прессования ниже 300°С формируется частично ячеистая структура, уменьшающая пластичность. Прессование при температуре выше 450°С сопровождается значительным ростом зерна.

Для повышения пластичности прессованного магниевого сплава и сохранения высокого уровня прочности его подвергают РКУП с истинной степенью деформации ε=4,5 при температуре 220-260°С. При этом, чтобы обеспечить РКУП при минимально возможно низкой температуре, обеспечивающей максимальное измельчение зерна, перед РКУП осуществляют отжиг при температуре 345°С в течение часа при последующем охлаждении заготовки на воздухе. В результате субмикроскопическая полигонизованная структура трансформируется в рекристаллизационную с равноосным достаточно мелким зерном, а тип и острота текстуры при этом практически не изменяются. В процессе РКУП такая исходная структура и текстура обеспечивают достачно высокую пластичность материала при относительно невысоких температурах прессования. Схема проходов при РКУП построена таким образом, чтобы после каждого прохода данный тип структуры сохранялся, а средний размер равноосных зерен с каждым проходом уменьшался. Такая схема РКУП позволяет снижать температуру прессования с каждым последующим проходом РКУП, доведя ее в последнем проходе до 220°С. Выбор угла пересечения каналов в 90° обеспечивает трансформацию исходной текстуры в наклоненную на угол 40-50° по отношению к направлению прессования, наиболее благоприятную для активизации базисного скольжения, что приводит к повышению ресурса пластичности сплава. Электронно-микроскопические исследования показали, что в процессе деформации в магниевом сплаве развивается непрерывная динамическая рекристаллизация. Пластическая деформация при ε<4 ведет к формированию смешанной структуры, состоящей из областей равноосных субзерен и полос, содержащих ячейки и плотные дислокационные сетки. В интервале ε=4-5 малоугловые границы субзерен и полос трансформируются в высокоугловые границы и в материале формируется относительно однородная ультрамелкозернистая структура с размером зерен 1-3 мкм и отклоненная достаточно острая базисная текстура, что и приводит к повышению пластичности материала при сохранении достаточно высокого уровня пределов текучести и прочности. Заключительная термообработка (отжиг при 345°С в течение 1 часа с охлаждением на воздухе) направлена на уменьшение предела текучести сплава за счет рассеяния отклоненной базисной текстуры и некоторого увеличения размера зерна. Таким образом, предложенные в изобретении дополнительные приемы приводят к повышению пластичности и деформируемости материала за счет получения высоких значений равномерного относительного удлинения при растяжении, коэффициентов нормальной пластической анизотропии и упрочнения и низких значений отношения предела текучести и прочности.

Способ иллюстрируется следующими примерами.

Пример 1. Литой сплав на основе магния, содержащий 4,5 мас.% Аl, 1,3 мас.% Zn и 0,5 мас.% Мn подвергли обработке по следующим режимам:

- прямое прессование при 340°С со степенью вытяжки 10 и скоростью экструдирования 1 мм/с;

- отжиг при 345°С в течение 1 час с охлаждением сплава на воздухе;

- РКУП с 4 проходами по режиму: 1-й проход при температуре 260°С, 2-й проход при температуре 240°С маршруту С; 3-й проход при температуре 240°С маршруту Вс и 4-й заключительный проход при температуре 220°С маршруту С (скорость прессования 10 мм/мин, истинная степень деформации ε=4,5);

- отжиг при 345°С в течение 1 час с охлаждением сплава на воздухе.

Обработанный по заявленной технологии сплав имел предел текучести σ0,2=135 МПа, предел прочности σВ=251 МПа, отношение σ0,2в=0,54, относительное равномерное удлинение δр=25,8%, произведение коэффициентов нормальной пластической анизотропии и упрочнения R·n=0,63.

Пример 2. Для сравнения сплав был обработан по режимам, частично исключающим операции заявленного способа с измерением аналогичных параметров.

После прямого прессования и отжига при 375°С, 1 часа с охлаждением на воздухе сплав имел σ0,2=239 МПа, σВ=298 МПа, σ0,2В=0,80, δр=10,3% и R·n =0,09.

После прямого прессования и отжига при 375°С, 1 часа с охлаждением на воздухе и последующего РКУП при 260-220°С сплав имел σ0,2=184 МПа, σВ=246 МПа, σ0,2В=0,75, δр=15,9% и R·n=0,48.

Анализ полученных данных показал, что пластичность и деформируемость после РКУП с последующим отжигом предварительно прессованного и отожженного магниевого сплава повышается в 2,5 раза, а деформируемость, оцененная по отношению σ0,2В, повышается в 1,5 раза, а она же, оцененная по параметру R·n, повышается в 7 раз.

Таким образом, только при совместном проведении всех заявленных технологических операций по заявленным режимам возможно получить магниевые сплавы, обладающие одновременно высокой пластичностью и деформируемостью.

Способ термомеханической обработки сплава системы Mg-Al-Zn, включающий прямое прессование сплава и равноканальное угловое прессование (РКУП) сплава в четыре прохода, отличающийся тем, что перед РКУП и после него осуществляют отжиг сплава при температуре 345°С в течение 1 ч с охлаждением на воздухе, прямое прессование сплава ведут при температуре 300-450°С со степенью вытяжки 7-18, а РКУП осуществляют при температуре 220-260°С с истинной степенью деформации ε=4,5 по схеме: первые два прохода по маршруту С, третий проход по маршруту Вс и четвертый проход по маршруту С.



 

Похожие патенты:

Изобретение относится к авиационному и космическому материаловедению и может быть использовано для изготовления изделий авиационной, ракетокосмической техники и машиностроения - деталей управления и кресел, несущих деталей внутреннего набора: кронштейнов, качалок, штамповки и др.
Изобретение относится к области металлургии, в частности к термомеханической обработке магниевых сплавов, и может быть использовано при изготовлении деталей в авиастроении, ракетной технике, конструкциях автомобилей, в атомных реакторах.

Изобретение относится к области металлургии, а именно к крипоустойчивым при высокой температуре магниевым сплавам. .

Изобретение относится к области обработки давлением специальных магниевых сплавов, легированных легкоиспаряющимися или образующими при деформации опасные для окружающей среды оксиды элементами и может быть использовано в прокатном производстве листов для анодов электрохимических источников тока.

Изобретение относится к области металлургии, в частности к способам получения горячекатаной ленты из магниевого сплава. .

Изобретение относится к области машиностроения и авиастроения и может быть использовано при изготовлении деформированных полуфабрикатов из магниевых сплавов. .
Изобретение относится к химии кремнийорганических соединений, в частности к способам получения органозамещенных силанов, и может быть использовано при получении кремнийорганических жидкостей и смол различных типов.

Изобретение относится к машиностроению в том числе к аэрокосмической технике, где могут быть применены деформируемые сплавы. .
Изобретение относится к способам термической обработки изделий из магниевых сплавов в частности, к термообработке рукояток спортивного лука. .

Изобретение относится к области металлургии, а именно к изделиям из магниевых сплавов со сформированным антикоррозионным или лакокрасочным покрытием и способам их изготовления

Изобретение относится к термообработке магниевых сплавов, которые могут быть упрочнены дисперсионным твердением

Изобретение относится к области металлургии, в частности к листу из магниевого сплава

Изобретение относится к области металлургии, в частности к технологии термомеханической обработки алюминиевых или магниевых сплавов при получении из них изделий с нано- и микрокристаллической структурой

Изобретение относится к области технологии получения высокотемпературных проводников в системе металл-оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами
Изобретение относится к конструктивному элементу из магниевого сплава с сильно выраженной металлической текстурой

Изобретение относится к области металлургии, в частности к изготовлению металлической фольги, и может быть использовано для изготовления элементов химических источников тока, магниевых аккумуляторов и диффузоров высококачественных динамиков. Способ включает получение листовой заготовки из литого полуфабриката холодным поперечным выдавливанием за одну операцию со степенью деформации 95-98% и последующую холодную прокатку листовой заготовки в фольгу до толщины 50-10 мкм с суммарным обжатием 95-99%. При выдавливании наряду с дроблением литой структуры заготовки одновременно проходит процесс динамической рекристаллизации и достигается получение мелкозернистой структуры у заготовки со средним размером зерен 5-10 мкм. Кроме того, заготовка имеет текстуру, в которой угол между нормалью к плоскости базиса зерна и нормалью к плоскости полосы составляет от 0° до 30°. Такие особенности структуры и текстуры заготовки обеспечивают ее высокую деформируемость при последующей холодной прокатке, что повышает технологичность процесса получения фольги за счет сокращения технологических операций. 8 ил.

Изобретение относится к области машиностроения и авиастроения, где могут быть применены магниевые сплавы в качестве легкого конструкционного материала для изготовления кронштейнов, несущих деталей внутреннего набора, таких как детали кресел, пульта управления, системы управления. Способ обработки магниевых сплавов включает нагрев литой заготовки, двухступенчатую деформацию и охлаждение на воздухе, при этом первую ступень деформации проводят при температуре 370-450°C в течение времени, необходимого для получения деформированной структуры, с последующим охлаждением заготовки на воздухе до комнатной температуры, причем перед нагревом литой заготовки ее подвергают двухступенчатой гомогенизации сначала при температуре 340-360°C в течение 6 ч и далее при температуре 440-470°C в течение 8 ч, а вторую ступень деформации проводят при температуре 350-450°C со скоростью деформации 0,01-0,7 м/с и последующем охлаждении на воздухе со скоростью 5-30°/с. Техническим результатом изобретения является повышение значения предела текучести при сжатии при сохранении малой анизотропии прочностных свойств и хорошей коррозионной стойкости. 1 табл., 9 пр.

Изобретение относится к области металлургии, в частности к механико-термической обработке магниевых сплавов, и может быть использовано в прокатном производстве магниевых деформируемых сплавов. Способ получения сортового проката из сплава на основе магния системы Mg-Al включает горячую деформацию путем продольной сортовой прокатки прутков круглого сечения за 6 проходов с суммарной величиной логарифмической деформации е = 1,6, причем прокатку проводят с постоянной скоростью в калибрах «круг-овал-круг» в области температур рекристаллизации с закалкой заготовки в воду при переходе с одного калибра на другой и последующим нагревом до температуры прокатки, при этом после каждого прохода осуществляют ротацию заготовки вокруг оси прокатки на 90°. Техническим результатом изобретения является повышение прочностных свойств для предела текучести более чем на 25-45% с одновременным снижением коэффициента анизотропии прочностных свойств в 2-3 раза относительно исходного состояния. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области металлургии, а именно к магниевым сплавам, и может быть использовано для изготовления биоразлагаемого имплантата. Биоразлагаемый имплантат содержит магниевый сплав, содержащий: Zn в количестве от 3 до 5 мас. %, Са в количестве от 0,2 до 0,4 мас. %, остальное представлено магнием, содержащим примеси, содействующие электрохимической разности потенциалов и/или образованию интерметаллических фаз, в общем количестве, не превышающем 0,0048 мас. %. Общее количество примесей содержит: отдельные примеси из группы Fe, Si, Mn, Со, Ni, Cu, Al, Zr, и Р в количестве, не превышающем 0,0038 мас. %, причем содержание Zr составляет менее 0,0003 мас. %, и легирующие элементы, выбранные из группы редкоземельных элементов, имеющих порядковые номера 21, 39, от 57 до 71 и от 89 до 103, в количестве, не превышающем 0,001 мас. %. Сплав содержит интерметаллическую фазу Ca2Mg6Zn3 и, необязательно, выделяемую фазу MgZn, каждая их которых характеризуется объемным содержанием, близким к значению до 2%, дисперсно распределенные на границах зерен с размером <5 мкм. Биоразлагаемый имплантат находится в стабильном электрохимическом состоянии с малой пористостью и высокой коррозионной стойкостью на протяжении длительного срока за счет высоких значений пределов прочности и текучести, а также сниженного значения механической асимметрии. 2 н. и 28 з.п. ф-лы, 1 пр.
Наверх