Электролит для топливного элемента прямого электроокисления боргидридов щелочных металлов

Изобретение относится к новому электролиту для топливного элемента прямого электроокисления боргидрилов щелочного металла и может быть использовано в автономных источниках водорода, для питания водородно-воздушных топливных элементов, а также в топливных элементах прямого окисления растворенного топлива. Предлагаемый согласно изобретению электролит включает концентрированный раствор гидроксида щелочного металла, преимущественно 6М КОН, вторичное топливо, выбранное из многоатомного спирта, такого как глицерин, и дополнительно содержит метилцеллозольв в качестве загустителя, и перфторированное соединение, для обеспечения повышенной растворимости кислорода воздуха и снижения затопляемости газовых пор катода. В качестве перфторированного соединения электролит преимущественно содержит соли теломерных или полностью фторированных кислот, например, тетраалкиламмонийные соли теломерных или перфторкарбоновых кислот H(CF2)nCOON(C4H9)4, где n=2-4 или RFCOON(C4H9)4, где RF=C2F5, С3F7, С4F9, взятых обычно в концентрации 10-12% (масс). Топливные композиции, включающие концентрат боргидрида щелочного металла, и предлагаемый электролит представляют собой гелевую композицию, которую удобно хранить до начала непосредственной эксплуатации автономного зарядного устройства (АЗУ) на основе ТЭ. Техническим результатом является снижение промокаемости катодного электрокатализатора и возможность затопления газовых пор газодиффузионного катода в процессе работы АЗУ и хранения. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к новому гелевому электролиту для топливного элемента (ТЭ) прямого электроокисления боргидридов щелочного металла и может быть использовано в автономных источниках водорода, для питания водородно-воздушных топливных элементов, а также в топливных элементах прямого окисления растворенного топлива в портативных автономных зарядных устройствах (АЗУ).

Анализ литературы, посвященной топливным композициям на основе металлогидридов щелочных металлов [см., например, патенты US6,554,877 или US6,562,497] показывает, что эти композиции состоят из так называемого первичного топлива - первичные, вторичные и третичные спирты (метанол, этиленгликоль, глицерин) и вторичного топлива - металлогидридов, в частности, боргидрида натрия, в концентрированном растворе гидроксида щелочного металла, преимущественно, в 6М КОН (см. US6,554,877). Роль первичного топлива сводится, в основном, к предотвращению несанкционированного разложения или электроокисления боргидрида в условиях разомкнутой цепи автономного зарядного устройства (АЗУ) на основе топливного элемента (ТЭ), когда не подключена нагрузка. В этом случае добавки спиртов выполняют роль адсорбирующихся добавок на активных местах анодного электрокатализатора. При подключении нагрузки эти добавки не должны влиять на электрокаталитические свойства анода в реакции прямого электроокисления боргидрида щелочного металла.

Ниже приведены реакции протекающие в боргидридно-воздушном ТЭ.

Общая реакция

ВН4-+2O2→ВO2-+2Н2O Е°=1.64 В

Анодные реакции

ВН4-+8ОН-→ВO2-+6Н2O+8е- Е°=-1.24 В

ВН4-+4OН-→ВO2-+2Н2O+2Н2+4е-

2+4OН-→4Н2O+4е-

Нежелательные реакции каталитического разложения боргидридов

ВН4-2O→ВН3ОН-2

BH 3 OH - 2 O→ВО 2- +3Н 2

ВН4-+2Н2O→ВO2-+4Н2

Катодная реакция

2O2+4Н2O+8е-→8OН- Е°=0.40 В

Следует отметить, что поскольку топливная композиция содержит органические добавки, они могут отрицательно влиять на катодную реакцию электровосстановления кислорода воздуха, вследствие их ускоряющего действия на промокаемость катодного электрокатализатора и возможность затопления газовых пор газодиффузионного катода. Задачей настоящего изобретения является улучшение состава электролита, для топливной композиции (ТЭ), содержащее высокоэффективное и безопасное топливо на основе боргидрида натрия или калия в щелочном растворе с добавками органических компонентов.

Предлагаемый согласно изобретению электролит для прямого электроокисления боргидридов щелочных металлов, включающий концентрированный раствор гидроксида щелочного металла, вторичное топливо, выбранное из многоатомного спирта, такого как глицерин в отличие от ранее известного электролита, описанного, например, в US6,554,877, дополнительно содержит метилцеллозольв в качестве загустителя и перфторированное соединение, для обеспечения повышенной растворимости кислорода воздуха и снижения затопляемости газовых пор катода.

В качестве перфторированного соединения электролит преимущественно соли теломерных или полностью фторированных кислот, например, тетраалкиламмонийные соли теломерных (не полностью фторированных) или перфторкарбоновых кислот H(CF2)nCOON(C4H9)4, где n=2-4 или RFCOON(C4H9)4, где RF=C2F5, С3F7, C4F9. При этом концентрация тетраалкиламмонийных солей теломерных или перфторкарбоновых кислот обычно составляет 10-12%(масс).

Концентрированный раствор гидроксида щелочного металла, как правило, представляет собой 6М КОН.

Можно использовать и другие концентрации и другие щелочные растворы. Однако это ухудшит результаты, получаемые при хранении и электроокислении боргидридов щелочных металлов.

Топливные композиции, включающие концентрат боргидрида щелочного металла, и предлагаемый электролит будут представлять собой гелевую композицию, которую удобно хранить до начала непосредственной эксплуатации зарядного устройства на основе ТЭ. Кроме того, предлагаемый электролит позволит снизить промокаемость катодного электрокатализатора и возможность затопления газовых пор газодиффузионного катода в процессе электроокисления и хранения.

Таким образом, композитное топливо для топливных элементов прямого электроокисления боргидридов щелочных металлов в растворе гидроксида щелочного металла имеет по крайней мере три компоненты. Первичное топливо - боргидрид щелочного металла - неорганическое соединение, содержащее водород с высоким восстановительным потенциалом, которое действует как высоко реактивный источник энергии и служит катализатором каталитического окисления вторичного топлива, выбранного из многоатомного спирта, такого как глицерин, которое является одновременно поверхностно-активным соединением и предохраняет от нежелательного каталитического разложения боргидрид щелочного металла - первичное топливо. Третий компонент - фторированное соединение, препятствует затоплению пор катода и повышает растворимость кислорода в электролите.

Боргидриды щелочных металлов имеют наиболее высокую теоретическую удельную энергию (9296 Вт ч кг-1 для NaBH4). Сочетание преимуществ (химическая стойкость боргидридов, дешевизна, доступность, растворимость в воде продуктов электрохимических превращений, безопасность при транспортировке, получение в качестве продукта прямого окисления метабората натрия, возможность работы при комнатной температуре, отсутствие потребности в дополнительной энергии для реализации процесса в реакторе (конструкция которого максимально проста) делают боргидридно-воздушные ТЭ крайне привлекательными в качестве источников тока.

В качестве окислителя в топливном элементе используется кислород воздуха.

Для приготовления электролита используют деионизированную воду.

В состав электролита могут входить также синтетические гидроколоиды, к которым относятся: натрий-карбоксиметилцеллюлоза, оксиэтилцеллюлоза, метиловый эфир целлюлозы, выполняющие роль реологических модификаторов (до 1%), регулирующих структуру топливной пасты от полужидкого до высоковязкого состояния.

Вязкость полученного на основе предлагаемого электролита топлива может составлять до 75 Па·с.

В состав электролита не входят компоненты, ускоряющие гидролиз боргидрида щелочного металла.

Предлагаемый электролит был испытан в макете боргидрид-воздушного топливного элемента.

На чертеже представлена вольтамперная характеристика боргидрид-воздушного ТЭ при комнатной температуре. Состав электролита 1М NaBH4, 10% C4F9COON(C4H9)4, 10% глицерина в 5 мл 6 М КОН (без загустителя).

Длительные испытания боргидрид-воздушного ТЭ при постоянном напряжении 0.7 В показали, что плотность тока окисления была стабильной и составляла от 70 до 80 мАсм-2.

1. Электролит для прямого электроокисления боргидридов щелочных металлов, включающий концентрированный раствор гидроксида щелочного металла, вторичное топливо, выбранное из многоатомного спирта, такого как глицерин, отличающийся тем, что дополнительно содержит метилцеллозольв в качестве загустителя и перфторированное соединение для обеспечения повышенной растворимости кислорода воздуха и снижения затопляемости газовых пор катода.

2. Электролит по п.1, отличающийся тем, что концентрированный раствор гидроксида щелочного металла представляет собой 6М КОН.

3. Электролит по п.1, отличающийся тем, что в качестве перфторированного соединения содержит соли теломерных или полностью фторированных кислот, например тетраалкиламмонийные соли теломерных или перфторкарбоновых кислот H(CF2)nCOON(C4H9)4, где n=2-4, или RFCOON(C4H9), где RF=C2F5, С3F7, C4F9 .

4. Электролит по п.3, сличающийся тем, что содержание тетраалкиламмонийных солей теломерных или перфторкарбоновых кислот обычно составляет 10-12 мас.%.



 

Похожие патенты:

Изобретение относится к портативному источнику тока - автономному зарядному устройству (АЗУ), на основе прямого окисления боргидридов щелочных металлов, которые могут быть использованы в автономных и стационарных источниках водорода, для питания водородно-воздушных топливных элементов, а также в топливных элементах прямого окисления растворенного топлива, например, в портативных автономных зарядных устройствах для телефонной связи и в автомобильной промышленности.

Изобретение относится к портативному источнику тока - автономное зарядное устройство (АЗУ), на основе прямого окисления боргидридов щелочных металлов, которые могут быть использованы в автономных и стационарных источниках водорода, для питания водородно-воздушных топливных элементов, а также в топливных элементах прямого окисления растворенного топлива, например, в портативных автономных зарядных устройствах для телефонной связи и в автомобильной промышленности.

Изобретение относится к новому аноду для прямого электроокисления боргидридов щелочных металлов в щелочной среде, который может быть использован для топливных элементов стационарного и мобильного применения, например для портативных источников тока.

Изобретение относится к области катализаторов для топливных элементов, в частности к катализатору для катода топливного элемента, а также к способу его получения. .
Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с твердым электролитом. .
Изобретение относится к высокотемпературным электрохимическим устройствам различного назначения. .

Изобретение относится к электрохимическим устройствам и применяется в источниках электрической энергии на основе высокотемпературных твердооксидных топливных элементов.

Изобретение относится к наночастицам сплава палладий-кобальт, используемым в качестве электрокатализаторов восстановления кислорода в топливных элементах. .

Изобретение относится к области электрохимических генераторов тока (ЭХГ) на щелочных топливных элементах (ТЭ), в частности к вспомогательным функциональным устройствам обслуживания ТЭ, а именно к устройствам для очистки воздуха, используемого в ТЭ в качестве окислителя, от диоксида углерода.

Изобретение относится к системам топливных элементов для аварийного энергоснабжения летательных аппаратов, к летательным аппаратам, содержащим такие системы топливных элементов, и к способу аварийного энергоснабжения на летательных аппаратах.

Изобретение относится к новому катоду со стабильным потенциалом для электровосстановления кислорода воздуха в боргидридных топливных элементах

Изобретение относится к системе охлаждения топливного элемента, причем электрическая проводимость охлаждающего средства, находящегося в системе охлаждения, должна удерживаться возможно малой <50 мкСм/см (50 микросименс/см) для того, чтобы препятствовать побочным реакциям в охлаждающем контуре топливного элемента

Изобретение относится к системе топливного элемента и, более конкретно, к системе топливного элемента, в котором топливный элемент работает с закрытым каналом отвода топливного газа

Изобретение относится к системе топливного элемента и к способу регулирования давления в аноде топливного элемента

Изобретение относится к топливным элементам с встроенной системой подачи рабочих сред

Изобретение относится к топливным элементам с системой удаления инертных примесей

Изобретение относится к топливным элементам с системой удаления инертных примесей

Изобретение относится к твердооксидным топливным элементам (ТОТЭ), содержащим металлическую подложку

Изобретение относится к электрохимическим устройствам и применяется в источниках электрической энергии на основе высокотемпературных твердооксидных топливных элементов

Изобретение относится к области водородной энергетики и представляет собой способ изготовления твердооксидных топливных элементов
Наверх