Способ определения скольжения ротора асинхронного электродвигателя

Изобретение относится к электротехнике и измерительной технике. Технический результат: расширение арсенала технических средств, уменьшение количества операций и сокращение времени определения. Сущность: способ заключается в том, что в установившемся режиме функционирования асинхронного двигателя одновременно регистрируют мгновенные величины токов трех фаз питания статора, определяют модуль результирующего вектора тока статора , где ia, ib, ic - мгновенные токи обмоток статора, проводят дискретное преобразование Фурье модуля результирующего вектора тока статора и одного из токов статора. Получают амплитудно-частотные характеристики модуля результирующего вектора тока статора и одного из токов статора. Выделяют основную частотную составляющую fs0 модуля результирующего вектора тока статора в диапазоне частот от 0 до 50 Гц и основную с наибольшей амплитудой составляющую одного из токов статора с частотой fc. Используя эти значения, определяют скольжение ротора . 1 з.п. ф-лы, 8 ил., 1 табл.

 

Изобретение относится к электротехнике, преимущественно к электрическим машинам и измерительной технике, предназначено для определения скольжения асинхронного двигателя.

Известен способ определения скольжения ротора асинхронного электродвигателя [Патент РФ 2209442, МПК7 G01R 31/34, опубл. 27.07.2003], заключающийся в том что на одной из фаз кабеля питания асинхронного электродвигателя осуществляют цифровую регистрацию мгновенной величины потребляемого им тока во времени, путем преобразования Гильберта выделяют низкочастотную огибающую амплитудно-модулированного сигнала потребляемого тока и определяют численные значения амплитуды потребляемого асинхронным электродвигателем тока, коэффициент амплитудной модуляции и скольжение ротора.

Недостатком известного способа является то, что он требует большое количество операций для осуществления.

Задачей изобретения является расширение арсенала технических средств аналогичного назначения.

Это достигается тем, что в способе определения скольжения ротора асинхронного электродвигателя, также как в прототипе, осуществляют цифровую регистрацию мгновенной величины потребляемого им тока на одной из фаз питания асинхронного электродвигателя.

Согласно изобретению в установившемся режиме функционирования асинхронного электродвигателя одновременно регистрируют мгновенные величины токов трех фаз питания статора, определяют модуль результирующего вектора тока статора, затем одновременно проводят дискретное преобразование Фурье модуля результирующего вектора тока статора и одного из токов статора, получая амплитудно-частотные характеристики модуля результирующего вектора тока статора и одного из токов статора, из которых выделяют основную частотную составляющую fs0 модуля результирующего вектора тока статора в диапазоне частот от 0 до 50 Гц и основную, с наибольшей амплитудой, составляющую одного из токов статора с частотой fc питающей сети, используя которые определяют скольжение ротора:

.

Модуль результирующего вектора тока статора определяют по выражению

где - ia, ib, ic - мгновенные токи обмоток статора (Гармаш B.C. Метод контроля исправности стержней ротора короткозамкнутого асинхронного двигателя // ИВУЗ. Энергетика. 1990. №10. С.50-52).

Использование такого подхода по сравнению с прототипом уменьшает количество операций, что позволяет быстрее определять скольжение ротора.

На фиг.1 приведена схема устройства, реализующего рассматриваемый способ определения скольжения асинхронного двигателя.

На фиг.2 приведена осциллограмма тока фазы А статора асинхронного двигателя.

На фиг.3 приведена осциллограмма тока фазы В статора асинхронного двигателя.

На фиг.4 приведена осциллограмма тока фазы С статора асинхронного двигателя.

На фиг.5 приведена осциллограмма модуля результирующего вектора тока статора асинхронного двигателя.

На фиг.6 приведена амплитудно-частотная характеристика модуля результирующего вектора тока статора асинхронного двигателя.

На фиг.7 приведена амплитудно-частотная характеристика тока одной из фаз статора асинхронного двигателя.

На фиг.8 приведена осциллограмма выходного сигнала датчика частоты вращения.

В табл.1 приведены наибольшие амплитуды и соответствующие им частоты амплитудно-частотных характеристик сигналов.

Заявленный способ может быть осуществлен с помощью устройства (фиг.1), содержащего первый датчик сигнала 1 (ДС1), подключенный к фазе А статора асинхронного двигателя. К первому датчику сигнала 1 (ДС1) последовательно подключены программатор определения модуля результирующего вектора тока статора 2 (ПМРВТС), первый программатор дискретного преобразования Фурье 3 (ПДПФ1), первый программатор выделения основной частоты 4 (ПОЧ1) и программатор определения скольжения 5 (ПС), который связан с дисплеем или ЭВМ (не показано на фиг.1). Второй датчик сигнала 6 (ДС2) подключен к фазе В статора асинхронного двигателя. Ко второму датчику сигнала 6 (ДС2) подключен программатор определения модуля результирующего вектора тока статора 2 (ПМРВТС). Третий датчик сигнала 7 (ДС3) подключен к фазе С статора асинхронного двигателя. К третьему датчику сигнала 7 (ДС3) подключен программатор определения модуля результирующего вектора тока статора 2 (ПМРВТС). К первому датчику сигнала 1 (ДС1) последовательно подключены второй программатор дискретного преобразования Фурье 8 (ПДПФ2), второй программатор выделения основной частоты 9 (ПОЧ2) и программатор определения скольжения 5 (ПС).

В качестве датчиков сигнала 1 (ДС1), 6 (ДС2) и 7 (ДС3) могут быть использованы датчики тока - промышленный прибор КЭИ-0,1. Программатор определения модуля результирующего вектора тока статора 2 (ПМРВТС), программаторы дискретного преобразования Фурье 3 (ПДПФ1) и 8 (ПДПФ2), программаторы выделения основной частоты 4 (ПОЧ1) и 9 (ПОЧ2), программатор определения скольжения 5 (ПС) могут быть выполнены на микроконтроллере серии 51 производителя amtel AT89S53.

Для проверки работоспособности предложенного способа определения скольжения первый датчик сигнала 1 (ДС1) подключили к фазе А статора питания универсального асинхронного двигателя с фазным ротором (2p=4, nc=1500 об/мин), второй датчик сигнала 6 (ДС2) подключили ко фазе В статора, третий датчик сигнала 7 (ДС3) подключили к фазе С статора. Одновременно регистрировали мгновенные значения токов ia, ib, ic статора в установившемся режиме функционирования асинхронного двигателя в течение 1 с. (фиг.2, фиг.3, фиг.4). Используя полученные значения в программаторе определения модуля результирующего вектора тока статора 2 (ПМРВТС), определили модуль результирующего вектора тока статора (фиг.5) по выражению (1). В программаторах дискретного преобразования Фурье 3 (ПДПФ1) и 8 (ПДПФ2) одновременно провели дискретное преобразование Фурье модуля результирующего вектора тока статора и тока ia питания фазы А обмотки статора и получили амплитудно-частотные характеристики модуля результирующего вектора тока статора в диапазоне частот от 0 до 50 Гц и тока ia питания фазы А обмотки статора. Зависимость амплитуды модуля результирующего вектора тока статора Ais, о.е. от частоты f, Гц приведена на фиг.6. Зависимость амплитуды тока одной из фаз питания Aia, о.е. от частоты f, Гц приведена на фиг.7. В таблице 1 представлены наибольшие амплитуды токов и соответствующие им частоты. Далее в программаторах выделения основной частоты 4 (ПОЧ1) и 9 (ПОЧ2) выделили основную частотную составляющую fs0=2 Гц модуля результирующего вектора тока статора и основную составляющую с наибольшей амплитудой потребляемого тока с частотой fc=50 Гц. Выделенные частоты fs0 и fc передали в программатор определения скольжения 5 (ПС), где определили скольжение ротора s,

.

Частоту вращения ротора определили по формуле

np=(1-s)·nc=(1-0.92)·1500=120 об/мин.

Для проверки правильности определения частоты вращения на валу асинхронного двигателя с фазным ротором расположили фотоэлектрический датчик частоты вращения ЛИР-51 (фиг.8). Среднее значение частоты вращения ротора с датчика частоты вращения np=123.89669 об/мин.

Таким образом, хорошо совпадают результаты расчета с экспериментальными данными.

1. Способ определения скольжения ротора асинхронного электродвигателя, заключающийся в том, что осуществляют цифровую регистрацию мгновенной величины потребляемого им тока на одной из фаз питания асинхронного электродвигателя, отличающийся тем, что в установившемся режиме функционирования асинхронного электродвигателя одновременно регистрируют мгновенные величины токов трех фаз питания статора, определяют модуль результирующего вектора тока статора, затем одновременно проводят дискретное преобразование Фурье модуля результирующего вектора тока статора и одного из токов статора, получая амплитудно-частотные характеристики модуля результирующего вектора тока статора и одного из токов статора, из которых выделяют основную частотную составляющую fs0 модуля результирующего вектора тока статора в диапазоне частот от 0 до 50 Гц и основную с наибольшей амплитудой составляющую одного из токов статора с частотой fc питающей сети, используя которые определяют скольжение ротора:

2. Способ по п.1, отличающийся тем, что модуль результирующего вектора тока статора определяют по выражению

где - ia, ib, ic - мгновенные токи обмоток статора.



 

Похожие патенты:

Изобретение относится к области преобразовательной техники, в частности к устройствам, позволяющим нагружать различные преобразователи с выходом на постоянном токе, аккумуляторные батареи, генераторы постоянного тока при проведении различных видов испытаний, в том числе и ресурсные.

Изобретение относится к области диагностики асинхронных электрических двигателей с фазным ротором. .

Изобретение относится к электротехнике, преимущественно к электрическим машинам и измерительной технике, предназначено для определения скольжения асинхронного двигателя с фазным ротором.

Изобретение относится к области технической диагностики и может быть использовано для контроля технического состояния электродвигателя переменного тока без его разборки, а также прогнозирования остаточного ресурса.

Изобретение относится к области электротехники и может быть использовано для детектирования изменения режима (R) ротора. .

Изобретение относится к области электромеханики и может быть использовано для определения степени их искрения. .

Изобретение относится к измерительной технике. .

Изобретение относится к области электротехники, в частности к технологическому контролю мощных генераторов, и может быть использовано на электростанциях для защиты от увлажнения изоляции электрических цепей генераторов.

Изобретение относится к области электротехники и может быть использовано в частотно-регулируемых приводах

Изобретение относится к электротехнике и может быть использовано для снятия характеристик, контроля обрыва, короткого замыкания генератора

Изобретение относится к области электротехники и может быть использовано для мониторинга и управления режимом работы всех силовых трансформаторов на одной подстанции

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения технического состояния силового трансформатора, расчета надежности и определения времени до возникновения отказа трансформатора

Изобретение относится к области электротехники, а именно к способам определения параметров асинхронных двигателей (АД)

Изобретение относится к электротехнике, к автоматике электрических сетей и предназначено для защиты силового трансформатора от длительной перегрузки

Изобретение относится к электротехнике и может быть использовано для контроля теплового состояния обмоток электродвигателей в процессе их эксплуатации в целях защиты от аварийных режимов

Изобретение относится к электротехнике

Изобретение относится к электротехнике, в частности к устройствам для испытаний электрических машин

Изобретение относится к области электротехники и может быть использовано в устройствах контроля ветряных двигателей
Наверх