Способ выявления штаммов бактерий-продуцентов l-аспарагиназы

Изобретение относится к биотехнологии и может быть использовано для повышения эффективности лабораторной селекции микроорганизмов-продуцентов L-аспарагиназ и найти применение при разработке новых лекарственных противоопухолевых ферментных препаратов. Способ предусматривает приготовление дифференциальной среды на основе стандартной среды LB или М9 с содержанием 1,5% агара и дополнительно содержащих L-аспарагин и диагностические компоненты - 0,0057 М или 0,0083 М сульфата меди CuSO4×5H2O и 0,0024 М или 0,0032 М гексацианоферрата калия K3Fe(CN)6 соответственно. Высев исследуемых микроорганизмов на соответствующую дифференциальную среду. Инкубацию посевов в термостате при оптимальной температуре роста микроорганизма в течение 12-20 или 24-48 часов соответственно. Учет результатов по окраске выросших колоний. Красный цвет колоний и окрашенная зона вокруг них указывают на способность исследуемого микроорганизма разрушать аспарагиновые комплексы. Изобретение позволяет сократить сроки выявления микроорганизмов, упростить и ускорить первичный отбор активных колоний, сохранить испытуемые колонии живыми. 3 ил., 1 табл.

 

Изобретение относится к микробиологии и прикладной биотехнологии и может быть использовано для лабораторной селекции бактерий-продуцентов L-аспарагиназ.

Заявляемый способ представляет собой новый специфический, быстрый, простой и удобный метод выявления наиболее активных продуцентов аспарагиназы в чашках Петри и может найти применение при разработке новых лекарственных противоопухолевых ферментных препаратов.

Бактериальная L-аспарагиназа из природных штаммов Escherichia coli, Erwinia carotovora или Erwinia chrysanthemi (L-аспарагинамидогидролаза, ЕС 3.5.1.1.) применяется при острых лимфобластных лейкозах, лимфо- и ретикулосаркомах человека [1, 2] и производится в США («Enzon/Rhone Poulenc Rorer»), Германии («Medac Gmbh», «Merck & Co.Inc.»), Англии («Ipsen Limited»), Латвии («Grindex») и ряде других стран. Эффективность производства бактериального препарата прямо зависит от количества вырабатываемого фермента. При получении рекомбинантных суперпродуцентов или возникновении мутаций возможно появление смешанных культур, что определяет необходимость выделения чистой наиболее активной культуры [3, 4, 5].

В настоящее время активность аспарагиназы определяют, в основном, фотометрическим методом, основанным на качественной и количественной оценке выделяющегося при гидролизе аспарагина аммиака реактивом Несслера [6, 7]. Менее широкое распространение получило спектрофотометрическое определение, возможно, из-за необходимости использования очищенного фермента [8].

Оба метода позволяют определять активность только в жидкой среде, что затрудняет отбор отдельных клонов. При этом для выделения чистых культур микробиологи пользуются почти исключительно методом поверхностных рассевов на пластинчатом агаре в чашках Петри, т.е. на твердой среде.

Наиболее близким к заявляемому способу из известных методов выявления штаммов-продуцентов L-аспарагиназы является метод R.Gulati et al, в котором используется твердая синтетическая среда с феноловым красным [9]. Недостатками метода являются плохая воспроизводимость и низкая специфичность. Кроме того, синтетическая среда может оказаться неполноценной для роста ауксотрофных микроорганизмов и привести к потере активного продуцента.

Техническим результатом заявляемого способа является создание простого и быстрого комплексонометрического метода выявления штаммов бактерий с высокой L-аспарагиназной активностью, позволяющего повысить эффективность отбора наиболее активных штаммов.

Указанный технический результат достигается путем подбора состава дифференциальной среды для выявления штаммов с высокой L-аспарагиназной активностью на основе стандартных сред LB (Luria-Bertani) или М9 с добавлением 1,5% агара, [10, 11, 12], содержащих дополнительно: 0,3 М L-аспарагин и диагностические компоненты - 0,0057 М или 0,0083 М сульфат меди (CuSO4×5Н2О) и 0,0024 М или 0,0032 М гексацианоферрат калия (K3Fe(CN)6, соответственно. Исследуемые бактерии высевают на поверхность приготовленной диагностической среды, выдерживают посевы в термостате при оптимальной температуре роста в течение 12-20 или 24-48 часов, соответственно, после чего учитывают результаты по окраске выросших колоний. Красный цвет колоний и красный ореол вокруг них указывают на способность исследуемого штамма разрушать аспарагиновые комплексы.

Установлено, что комплексонометрическое определение наиболее активных продуцентов L-аспарагиназы основано на образовании прочных красных комплексов меди с анионом гексацианоферрата при ферментативном разрушении синих комплексов с L-аспарагином и L-аспарагиновой кислотой. В результате реакции активные колонии окрашиваются в красный цвет, в то время как неактивные свой естественный цвет не изменяют. Суть предложенного способа выявления штаммов бактерий с L-аспарагиназной активностью состоит в следующем.

В результате реакции с восстанавливающими ингредиентами агара, входящего в состав твердой среды LB и среды М9 из добавленного гексацианоферрата (III) образуется гексацианоферрат (II). При ферментативном гидролизе аспарагина и разрушении прочного хелатного комплекса этой аминокислоты с Cu (II) ионы меди связываются с анионом гексацианоферрата (II), что сопровождается выпадением красно-коричневого осадка.

Cu2++[Fe(CN)6]2-→Cu2[Fe(CN)6]↓

рН≤7

Среду, содержащую комплексные соединения с медью, готовят непосредственно перед употреблением. Автоклавирование питательной среды и растворов проводят в стандартных условиях. Ниже приведены примеры приготовления сред.

Пример 1. Модифицированная среда LB.

Сначала готовится стандартная среда LB. На 1 л: бакто-триптон 10 г [«Fluka» (Швейцария)]; бакто-дрожжевой экстракт 5 г [«Fluka» (Швейцария)]; NaCl 10 г [«Sigma-Aldrich» (США)]; pH 7,6 [10, 11, 12, 13]. К 100 мл расплавленной стерильной среды LB, содержащей 1,5% бакто-агара [«Ferak» (Германия)], последовательно добавляют 4,0 г L-аспарагина [«Reanal» (Венгрия)]; 3,0 мл 0,2 М CuSO4×5H2O [«Sigma-Aldrich (США)], и 2,5 мл 0,1 М K3Fe(CN)6 [«Sigma-Aldrich»(США)]. Таким образом, конечная концентрация дополнительных компонентов составляет 0,3 М L-аспарагина, 0,0057 М CuSO4×5H2O и 0,0024 М K3Fe(CN)6. После добавления каждого компонента смесь тщательно перемешивают.

Пример 2. Модифицированная среда М9.

Сначала готовится стандартная среда М9. На 1 л: Na2HPO4 6 г [«Serva»(Германия)]; KH2PO4 3 г [«Serva»(Германия)]; NaCl 0,5 г [«Sigma-Aldrich» (США)]; NH4Cl 1 г [«Sigma-Aldrich» (США)]; pH 7,6. После автоклавирования и охлаждения в среду добавляют следующие компоненты: 1 М MgSO4x7H2O 2 мл [«Sigma-Aldrich» (США)]; 20% глюкоза 10 мл [«Panreac» (Испания)]; 1 М CaCl2 1 мл [«Sigma-Aldrich» (США)]. Три последних раствора стерилизуются фильтрованием [10, 11]. К 100 мл расплавленной стерильной среды М9, содержащей 1,5% агара [«Ferak» (Германия)], последовательно добавляют 4,0 г L-аспарагина [«Reanal» (Венгрия)]; 4,5 мл 0,2 М CuSO4×H2O [«Sigma-Aldrich» (США)] и 3,5 мл 0,1 М K3Fe(CN)6 [«Sigma-Aldrich» (США)]. Таким образом, конечная концентрация дополнительных компонентов составляет 0,3 М L-аспарагина, 0,0083 М CuSO4×5H2O и 0,0032 М K3Fe(CN)6. После добавления каждого компонента смесь тщательно перемешивают.

При необходимости в среду вносят антибиотики и индукторы {например, при выращивании штаммов BL-21(DE3)/pBAD/ECARLANS (E.coli/pBAD) и BL-21(DE3)/pACYC177-LANS (E.coli/pACYC) вносят L-арабинозу [«Sigma-Aldrich» (США)] до 0,0015 М или IPTG (isopropyl-beta-D-thiogalactopyranoside) [«Sigma-Aldrich» (США)] до 0,001 M} соответствено. Среду разливают в чашки Петри и подсушивают в ламинаре в течение 20 мин. Горячая готовая среда зеленого цвета, холодная - зеленоватая с голубым оттенком, что обусловлено сочетанием синего цвета медного комплекса и желтого гексацианоферрата.

Герметично закрытые готовые чашки могут храниться при комнатной температуре в течение месяца. Покрасневшая или побуревшая среда вследствие выпадения осадка Cu2[Fe(CN)6] к употреблению непригодна.

Для тестирования сред из коллекции лаборатории медицинской биотехнологии ИБМХ РАМН отобраны рекомбинантные штаммы Е.coli с высокой L-аспарагиназной активностью от 12 до 34 МЕ/мг белка: BL-21(DE3)/pBAD/ECARLANS (E.coli/pBAD) и BL-21(DE3)/pACYC177-LANS (E.coli/pACYC); стандартные генетически модифицированные штаммы E.coli, используемые в биотехнологии с низкой L-аспарагиназной активностью (до 10 МЕ/мл белка): JM 109, DH-52, МС 1061, BL-21(DE3); а также природные штаммы: Lactobacillus plantarum, Lactobacillus casei varrhamnosus, Bacillus megaterium, Bacillus subtilis и Erwinia carotovora N1 (коллекция микроорганизмов БГУ, Минск, Беларусь) с активностью 0,003-0,007 и 0,1-0,3 МЕ/мг белка соответственно.

Бактериальную культуру шпателем или петлей рассевают по поверхности диагностической среды, приготовленной по примеру 1 или 2. Чашки помещают в термостат при температуре 37°С на 12-20 часов (среда на основе LB) и 24-48 часов (среда на основе М9). Покраснение колоний и диаметр окрашенной зоны вокруг них зависят от клеточной массы и способности изучаемых штаммов разрушать аспарагиновые комплексы. Более длительная инкубация не рекомендуется вследствие образования и диффузии побочных продуктов реакции и метаболитов клеток.

Результаты, полученные при применении заявляемого способа, были сопоставлены с данными стандартного метода с использованием реактива Несслера. Активность L-аспарагиназы выражали в Международных единицах (ME). За 1 ME активности принимали количество фермента, катализирующего высвобождение 1 мкмоль аммиака за 1 мин при 37°С.

Результаты представлены в табл.1 и на фиг.1-3.

На фиг.1 видна хорошая воспроизводимость результатов при правильно подобранных условиях. В семи бесцветных секторах находятся штаммы E.coli XL-blue, Lactobacillus plantarium, Erwinia carotovora, Bacillus subtilis, Bacillus megaterium, E.coli BL-21 (DE3), E.coli DH-52. В окрашенном секторе - E.coli BL-21 (DE3)/pACYC177-LANS. На фиг.2 видны отдельные окрашенные колонии в однородной культуре. На фиг.3 видна смесь активных и неактивных клонов.

Показано, что только колонии Lactobacillus plantarium, Lactobacillus casei varrhamnosus и Bacillus subtilis, Bacillus megaterium с активностью 0,007 МЕ/мг белка оставались неокрашенными при любых сроках инкубации и любой окраске среды.

Приведенная в примерах 1 и 2 концентрация CuS04x5H2O эквивалентна содержанию связующих компонентов среды; увеличение концентрации и появление свободных ионов меди приводит к неспецифическому красному окрашиванию и невозможности роста клеток в этих условиях. Гексацианоферрат калия является не только необходимым компонентом основной реакции, но и индикатором, свидетельствующим о наличии или отсутствии токсических количеств ионов меди.

Незначительное изменение концентраций хлоридов или нитратов заметно не влияет на результат. Изменение ионного состава осложняет анализ, поэтому для приготовления среды желательно использовать бакто-триптон и дрожжевой экстракт с контролируемым содержанием примесей. В случае выраженных биохимических нарушений в клетках продукты неполного окисления и метаболиты, особенно альдегиды и кетоны, выделяемые в среду, также влияют на рН и окислительно-восстановительный потенциал системы, а следовательно, и на процесс тестирования, что может привести к неспецифическому покраснению колоний.

Несмотря на колебания химического состава некоторых ингредиентов сред (бакто-триптон и дрожжевой экстракт), применение реагентов (с учетом производителя) в соответствующих концентрациях позволяет получать хорошо воспроизводимые результаты не только на синтетических средах, таких как М9, но даже в среде LB.

Таким образом, предложенный комплексонометрический способ позволяет:

1) выявлять бактериальные штаммы с L-аспарагиназной активностью не менее 0,01-0,1 МЕ/мг белка, в т.ч. проводить первичный отбор единичных активных колоний прямо с чашки;

2) оценивать чистоту культуры по биохимической активности в отношении L-аспарагина;

3) сохранять испытуемые колонии живыми и использовать их в дальнейшей работе, т.к. клетки растут на привычной среде, ионы гексацианоферрата по мере дезамидирования аспарагина удаляются из раствора в виде осадка с медью, а ионы меди постоянно находятся в связанном состоянии и на рост культуры практически не влияют;

4) использовать не только синтетические среды, но и традиционную среду LB, на которой растет большинство микроорганизмов, и, наиболее вероятно, сможет расти любой модифицированный штамм.

5) использовать доступные и недорогие реактивы.

Литература

1. Wriston J.C. Asparaginase // Methods in Enzymology. - 1985, - Vol.113. - P.608-618.

2. Соколов Н.Н., Занин А.А., Александрова С.С.Бактериальные L-аспарагиназы и глутамин (аспарагин)азы: некоторые свойства, строение и противоопухолевая активность // Вопросы медицинской химии - 2000. - Том. 46(6). - С.531-548.

3. Harms E., Wehner A., Jennings M. et al. Construction of expression system for Escherichia coli asparaginase 11 and two-step purification of the recombinant enzyme from periplasmic extracts // Protein Expr. Purif. - 1991. - Vol.2. - P.144-150.

4. Gilbert H.J., Blazek R., Bullman H.M. et al. Cloning and expression of the Erwinia chrysanthemi asparaginase gene in Escherichia coli and Erwinia carotovora // J.Gen. Microbiol. - 1986. - Vol.132. - P.151-160.

5. Эльдаров М.А., Жгун А.А., Гервазиев Ю.В. и др. Ген L-аспарагиназы Erwinia carotovora и штамм Escherichia coli ВКПМ №В-8174 - продуцент L-аспарагиназа Erwinia carotovora // Патент РФ 2221868. 20.01.2004 Бюл.№2.

6. Wade H.E., Phillips P.B.Automated determination of bacterial asparaginase and glutaminase // Anal.Biochem. - 1971. - Vol.44. - P.89.

7. Wriston J.C. Asparaginase // Methods Enzymol. - 1970. - Vol.17A. - P. 732-742.

8. Howard J.B., Carpenter, F.H. L-asparaginase from Erwinia carotovora. Substrate specificity and enzymatic properties // J. Biol. Chem. - 1972. - Vol.247. - P.1020-1030.

9. Gulati R. et al. A rapid plate assay for screening L-asparaginase producing micro-organisms // Letters in Applied Microbiology. - 1997. - Vol.24. - P.23-26.

10. Мазин А.В., Кузнеделов К.Д., Краев А.С. и др. Методы молекулярной генетики и генной инженерии. - Новосибирск: «Наука». - 1990. - 248 с.

11. Maniatis G. Molecular Cloning, A Laboratory manual. 1 st edition. - 1987. - P.68.

12. Bertani G. Studies on Lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli // L Bacteriology. - 1952. - Vol.62. - P.293-300.

13. Guennadi S., Joseleau-Petit D., D'Ari R. Escherichia coli Physiology in Luria-Bertani Broth // J. Bacteriology. - 2007. - Vol.189. - P.8746-8749.

Таблица.
Сравнительная характеристика тест-штаммов микроорганизмов на предлагаемой диагностической среде на основе стандартных сред LB и М9
Номер штамма Тестируемые штаммы Цвет отдельных колоний Время инкубации до появления цвета при высеве истощающим мазком в диагностической среде на основе М9 Время инкубации до появления цвета при высеве истощающим мазком в диагностической среде на основе LB Активность с реактивом Несслера МЕ/мг белка
1 E.coli BL-21(DE3) / pBAD/ ECARLANS Красный с индукцией, розовый без индукции 24 12-15 28
2 E.coli BL-21(DE3) / pACYC177-LANS Красный с индукцией и без индукции* 24 13-16 34
3 E.coli XL-blue Розовый 48 16-18 4,3
4 E.coli JM-109 Розовый 48 16-18 0,12
5 E.coli BL-21 (DE3) Розовый 48 16-18 5,2
6 E.coli DH-52 Розовый 48 16-18 3,4
7 E.coli MC 1061 Розовый 48 16-18 3,2
8 Bacillus megaterium Белый 48 48 0,007
9 Bacillussubtilis Белый 48 48 0,006
10 Erwinia carotovora Белый 48 48 0,3
11 Lactobacillus plantarium Белый 48 48 0,003
12 Lactobacillus casei varrhamnosus Белый 48 48 0,005
* Примечание. Красный ореол вокруг колоний, наблюдаемый в отсутствие индуктора, связан с подтеканием промотора. В присутствии индуктора ореол значительно больше, чем без него

Способ выявления штаммов бактерий-продуцентов L-аспарагиназы, предусматривающий высев исследуемых штаммов на поверхность дифференциальной среды, приготовленной на основе стандартных сред LB или М9 с добавлением 1,5% агара, дополнительно содержащих 0,3 М L-аспарагина и диагностические компоненты - 0,0057 М или 0,0083 М сульфата меди CuSO4·5H2O и 0,0024 М или 0,0032 М гексацианоферрата калия K3Fe(CN)6, соответственно, инкубацию при оптимальной температуре роста штамма в течение 12-20 или 24-48 ч на соответствующей дифференциальной среде, и последующий учет результатов по окраске выросших колоний, при этом красный цвет колоний и красный ореол вокруг них указывают на наличие L-аспарагиназной активности исследуемого штамма.



 

Похожие патенты:

Изобретение относится к генной инженерии и биотехнологии и может быть использовано в медико-биологической промышленности. .

Изобретение относится к области биотехнологии, в частности к генетической инженерии, и может быть использовано в медицинской практике. .

Изобретение относится к области фармацевтики и биотехнологии

Настоящее изобретение относится к биотехнологии и представляет собой мутантные варианты рекомбинантной L-аспарагиназы, характеризующиеся аминокислотной последовательностью, соответствующей аминокислотной последовательности L-аспарагиназы бактерий Wolinella succinogenes, в которой аминокислотный остаток лизина в положении 24 заменен на остаток серина либо аминокислотный остаток валина в положении 23 заменен на остаток глутамина, а аминокислотный остаток лизина в положении 24 заменен на остаток треонина. Изобретение позволяет получить варианты L-аспарагиназы с улучшенной устойчивостью к протеолизу под действием трипсина по сравнению с немодифицированным рекомбинантным белком и различным уровнем глутаминазной активности при полном сохранении аспарагиназной активности, что делает их привлекательными объектами для разработки на их основе новых противоопухолевых терапевтических препаратов. 2 н.п. ф-лы, 1 ил., 1 табл., 11 пр.

Изобретение относится к биотехнологии, а именно к применению аспарагиназы и способу приготовления пищевого продукта с использованием данной аспарагиназы. Аспарагиназу, аминокислотная последовательность которой имеет по крайней мере 90% гомологию с аминокислотной последовательностью <SEQ ID NO:2>, остаточная активность которой после инкубации продолжительностью 5 минут при температуре в диапазоне от 70°C до 100°C составляет 200 ед./мг, применяют для приготовления пищевого продукта, который содержит аспарагин. Способ приготовления пищевого продукта включает инкубирование пищевых продуктов с указанной аспарагиназой при температуре инкубации, составляющей по крайней мере 50°C. В случае необходимости, нагревают пищевые продукты до температуры, лежащей по крайней мере на 10°C выше температуры инкубации. При необходимости, выделяют аспарагиназу из пищевых продуктов или инактивируют амидогидролазу. В случае необходимости, повторяют применение аспарагиназы. Предложенное изобретение позволяет снизить содержание аспарагина или акриламида в пищевых продуктах, содержащих аспарагин. 2 н. и 13 з.п. ф-лы, 5 ил., 11 табл., 4 пр.

Изобретение относится к биотехнологии и представляет собой новый фермент аспарагиназу, полученную из Basidiomycete. Изобретение относится также к способу гидролиза одного из L-аспарагина или L-глутамина, включающего обработку субстрата, содержащего одно из L-аспарагина или L-глутамина, ферментом аспарагиназой. Изобретение относится также к способу уменьшения образования акриламида в пищевом веществе, содержащем L-аспарагин, включающему нанесение на пищевое вещество, содержащее L-аспарагин фермента аспарагиназы и нагревание вещества, содержащего L-аспарагин. Изобретение позволяет расширить арсенал ферментов, относящихся к аспарагиназам, а также уменьшить образование канцерогенного акриламида в термически обработанной пище. 3 н. и 6 з.п. ф-лы, 9 ил., 6 пр.

Изобретение относится к биотехнологии и представляет собой гибридный белок на основе мутантной рекомбинантной L-аспарагиназы бактерий Wolinella succinogenes с пониженной глутаминазной активностью и повышенной устойчивостью к действию трипсина, слитой с N-концевой аминокислотной последовательностью гепарин-связывающего пептида. Изобретение относится также к штаммам-продуцентам и к способу получения этого гибридного белка. Изобретение позволяет расширить ассортимент гибридных белков на основе аспарагиназы, обладающих противоопухолевой активностью. 4 н.п. ф-лы, 2 ил., 2 табл., 27 пр.

Изобретение относится к дрожжам для снижения акриламида или аспарагина в пищевом продукте. Дрожжи трансформированы по меньшей мере двумя из следующих модификаций: а) делеция или инактивация гена, кодирующего отрицательный регуляторный фактор, регулируемого азотной катаболитной репрессией, или введение молекулы нуклеиновой кислоты, которая сверхэкспрессирует положительный регуляторный фактор генов, регулируемых азотной катаболитной репрессией, для снижения азотной катаболитной репрессии; b) введение молекулы нуклеиновой кислоты для сверхэкспрессии гена, кодирующего аспарагиназу клеточной стенки, которая расщепляет аспарагин; и c) введение молекулы нуклеиновой кислоты, кодирующей транспортер аминокислот, который транспортирует аспарагин в условиях приготовления/переработки пищевых продуктов. Предложены также варианты способа снижения количества аспарагина или акриламида в пищевых продуктах и пищевые продукты, обладающие сниженным содержанием акриламида, полученные с использованием указанных дрожжей. Изобретение обеспечивает улучшенную способность снижать концентрацию акриламида в пищевых продуктах, приготовленных посредством нагревания. 7 н. и 26 з.п. ф-лы, 20 ил., 2 табл., 4 пр.
Наверх