Захватное устройство для закрепления стержневых образцов, не имеющих захватной части, при испытаниях на растяжение

Изобретение относится к испытательной технике. Захватное устройство содержит удерживающие образец зажимные кулачки, корпус и равномерно распределенные по его периметру рычаги, расположенные под углом к продольной оси образца, шарнирно соединенные с корпусом и с зажимными кулачками. Каждый из кулачков установлен диаметрально противоположно относительно образца месту крепления соединенного с ним рычага к корпусу. Число кулачков выбрано равным числу рычагов, при этом части рычагов, огибающие образец, выполнены в виде скоб, а для первоначального закрепления образца между корпусом и кулачками установлен упор и упругий элемент, воздействующий на кулачки в направлении к образцу. Технический результат: исключение риска пластического пережима образца металлов и сплавов, снижение габаритов устройства, возможность испытаний малогабаритных образцов. 2 ил.

 

Изобретение относится к испытаниям на растяжение при исследовании механических свойств материала, в частности к захватным устройствам для закрепления образца.

В ряде отраслей техники приходится проводить механические испытания изделий, прочность которых зависит не только от исходного качества материала, но и от технологии изготовления (при производстве холоднотянутой проволоки, арматурных прутков и т.п.) или условий эксплуатации (при длительном воздействии вибраций, коррозии и т.п.), приводящих к неоднородности свойств материала по сечению изделия. При малом поперечном сечении изделий получение из них образцов с развитой захватной частью невозможно, к тому же механическая обработка образцов приводит к потере информации о свойствах во внешней части изделия. В таких случаях применяют захватные устройства, позволяющие проводить испытания на стержневых образцах без захватной части, с неизменным по всей длине сечением.

При испытании образцов, не имеющих захватной части, удержание их производится силами трения, возникающими при сжатии образцов радиально сдвигающимися элементами: захватами, клиньями, кулачками и т.п. Это является сложной технической задачей, так как силы трения зависят одновременно от сжимающей радиальной силы и от коэффициента трения между образцом и захватами. Коэффициент трения в свою очередь определяется рядом переменных неуправляемых параметров: твердости материала, состояния поверхности образца, включая наличие на ней коррозии или следов смазки, поэтому варьирует в широких пределах. В определенных пределах варьируют и свойства испытуемых образцов. При низком значении коэффициента трения и повышенных свойствах материала испытательное усилие может оказаться больше сил трения, что приведет к выскальзыванию образца из захватов. Стремление же обеспечить запас сил трения увеличением силы радиального сжатия приводит к риску пластического пережима образцов, особенно при пониженной их прочности. В данных условиях необходимо обеспечивать оптимальное соотношение силы радиального сжатия образца с прилагаемым к нему испытательным усилием.

Одним из способов решения задачи является использование захватных устройств, в которых постоянное соотношение силы радиального сжатия на образец с приложенным к образцу испытательным усилием обеспечивается конструктивно.

Известны технические решения, в которых заданная пропорция между испытательным усилием и силой сжатия обеспечивается с помощью клиновых и рычажных механизмов. К их числу относится механизм, в котором надежность и быстродействие крепления образца обеспечивается клиновыми губками, установленными на линейные подшипники качения, под действием приложенного к образцу испытательного усилия [п. РФ №2187793 с приоритетом от 20.08.2002, G01N 3/04. Захват для крепления образцов при испытаниях на растяжение].

Общим недостатком клиновых механизмов является необходимость использования сложных и громоздких подшипниковых узлов для установки каждого из кулачков, что приводит к существенному увеличению габаритов устройства, неприемлемому при испытании образцов с ограниченными размерами.

Известно также устройство, в котором необходимое соотношение усилий обеспечивается с помощью комбинации клинового механизма и рычажной системы [п. ФРГ №2452037 с приоритетом от 06.05.1976, G01N 3/04. Зажимное приспособление машины для испытаний материалов]. В данном устройстве испытательное усилие воздействует на клиновидный поршень, перемещение которого создает радиальные усилия на зажимающих образец рычагах.

Недостатком данного устройства также является сложность и громоздкость, обусловленная многозвенностью конструкции.

Наиболее близким к предлагаемому устройству является механизированное захватывающее приспособление, устанавливаемое на машины для физических испытаний [п. Великобритании №949973, с приоритетом от 19.02.1964, G01N 3/04. Модернизированные захватывающие приспособления, устанавливаемые на машины для физических испытаний]. В этом приспособлении для закрепления образца силой, пропорциональной испытательной нагрузке, используется параллелограммный рычажный механизм, рычаги которого устанавливаются под некоторым углом к направлению оси образца (фиг.1). При рассмотрении принципа действия данного механизма удобнее характеризовать наклон рычагов с помощью угла α между рычагами и нормалью к оси образца. Под действием испытательного усилия F образец стремится переместить кулачки в соответствующем направлении, а сопутствующий этому перемещению поворот рычагов приводит к возникновению радиальной силы R=F/tgα, сжимающей образец, и, как следует из приведенной зависимости, пропорциональной испытательному усилию F. Оптимальная пропорция между испытательным усилием и закрепляющей образец радиальной силой устанавливается выбором угла наклона рычагов α, который с требуемым запасом должен быть меньше угла трения между зажимным кулачком и образцом.

Достоинство данного приспособления состоит в простоте его конструкции, включающей минимальное число кинематических звеньев.

Недостатком известного приспособления является то, что вследствие малых значений коэффициента трения и необходимости иметь запас по силе трения радиальная сила должна кратно превышать растягивающую нагрузку, вследствие чего угол наклона рычагов α весьма мал. При этом угол α не является постоянным. Он зависит от диаметра образца, меняющегося в определенных пределах. С ростом усилий на рычагах возрастают упругие деформации в системе, из-за чего угол α уменьшается. С уменьшением угла α резко увеличивается отношение радиальной силы R к испытательной нагрузке, что может привести к пластическому пережиму образца до того, как будет завершено его испытание. Для уменьшения вариации угла α приходится увеличивать длину рычагов, что приводит к росту габаритов устройства в направлении к образцу, к загромождению рабочего пространства устройства и требует увеличения длины образцов. Если длина испытуемых образцов заведомо ограничена, а на рабочей части образцов необходимо закреплять датчики для измерения деформации, возможность развития габаритов устройства ограничена, поэтому применение устройства данной конструкции невозможно.

Механизированное захватывающее приспособление, устанавливаемое на машины для физических испытаний [п. Великобритании №949973], выбрано в качестве прототипа.

Задачей, стоящей перед авторами предлагаемого изобретения, является разработка захватного устройства для механических испытаний на растяжение малогабаритных образцов без захватной части, исключающего риск пластического пережима образца силами сжатия при больших испытательных усилиях, а следовательно, для повышения надежности закрепления.

Техническим результатом данного технического решения является исключение риска пластического пережима образца металлов и сплавов, снижение габаритов устройства, возможность испытаний малогабаритных образцов.

Технический результат достигается тем, что в предлагаемом захватном устройстве для закрепления стержневых образцов, не имеющих захватной части, при испытаниях на растяжение, содержащем удерживающие образец зажимные кулачки, корпус и равномерно распределенные по его периметру рычаги, расположенные по углом к продольной оси образца, шарнирно соединенные с корпусом и с зажимными кулачками, согласно изобретению каждый из кулачков расположен диаметрально противоположно относительно образца месту крепления соединенного с ним рычага к корпусу, число кулачков выбрано равным числу рычагов, при этом части рычагов, огибающие образец, выполнены в виде скоб, а для первоначального закрепления образца между корпусом и кулачками установлен упор и упругий элемент, воздействующий на кулачки в направлении к образцу.

Установление каждого из кулачков диаметрально противоположно относительно образца месту крепления соединенного с ним рычага к корпусу обеспечивает увеличение длины рычага при тех же габаритах устройства, что уменьшает вариацию угла наклона рычагов, вызванную погрешностями зажимаемой части образца и упругих деформаций элементов устройства, возникающих при его работе. Рычаги, присоединенные к кулачкам, приобретают направление в сторону, противоположную рабочей части образца, что дает возможность дополнительной стабилизации угла наклона рычага путем увеличения его длины, так как увеличение габаритов предлагаемого устройства не загромождает рабочую часть испытательной системы и не ограничивает возможность испытаний малогабаритных образцов. При испытаниях образцов с повышенным испытательным усилием упругие деформации в предлагаемом устройстве приводят к некоторому увеличению угла между рычагами и нормалью к оси образца, что исключает пластическое деформирование зажимаемой части образца радиальными силами при любой величине испытательного усилия. Рычаги для исключения пересечения друг с другом и кулачками выполнены в виде скоб. Для равномерного обжатия образца количество рычагов соответствует количеству кулачков. Упор и упругий элемент установлены для первоначального закрепления образца.

На фиг.1 показана схема работы приспособления, выбранного в качестве прототипа [п. Великобритании №949973].

На фиг.2 показан пример конкретного исполнения захватного устройства для закрепления стержневого образца круглого сечения, не имеющего захватной части, с помощью трех рычагов и трех кулачков, при испытаниях на растяжение, где:

1 - стержневой образец без захватной части;

2 - рычаги;

3 - кулачки;

4 - корпус;

5 - упругий элемент;

6 - упор.

Устройство работает следующим образом. Благодаря использованию упругого элемента 5 при установке образца круглого сечения 1 к свободным торцам трех кулачков 3 прикладывается небольшое установочное усилие, которое приводит к их перемещению, повороту трех рычагов 2 и радиальному расхождению кулачков 3 до тех пор, пока расстояние между ними не станет достаточным для прохода образца. При испытаниях плоского образца достаточно двух кулачков и двух рычагов. Оптимальное конечное положение образца 1 при установке обеспечивается перемещением его до упора 6. При снятии установочного усилия упругий элемент 5 воздействует на кулачки 3 и перемещает их в направлении образца 1, что сопровождается поворотом рычагов 2 и схождением кулачков 3 с начальной силой сжатия. При испытании образца 1 наличие начальной силы сжатия гарантирует и наличие сил трения, которые увлекают кулачки 3, воздействующие на рычаги 2 и стремятся повернуть их в направлении увеличения угла наклона между рычагами 2 и нормалью к оси образца 1. При этом возникают силы сжатия образца 1, пропорциональные испытательному растягивающему усилию и при любом его значении достаточные для удержания образца 1. Увеличение угла между рычагами 2 и нормалью к оси образца 1 гарантированно исключает пластическое деформирование радиальными силами при любой величине испытательного усилия. Рычаги 2 для исключения пересечения друг с другом и кулачками 3 выполнены в виде скоб.

Благодаря заявляемой совокупности признаков устройства появляется возможность увеличения длины рычагов 2 при сохранении габаритов захватного устройства, что уменьшает вариацию угла наклона рычага 2 и делает соотношение между испытательным усилием и радиальными силами сжатия образца более стабильным. Не ограничивается и возможность дополнительной стабилизации угла наклона рычагов 2 путем увеличения их длины, так как при этом рост габарита устройства происходит в направлении, противоположном рабочей части образца и не затрудняет его испытаний. Упругие деформации устройства в процессе испытания приводят к увеличению угла наклона рычагов 2, что снижает отношение радиальной сжимающей силы к испытательной нагрузке и полностью исключается риск пластического пережима образца при любых испытательных нагрузках.

С использованием предложенной совокупности признаков разработана модель реального устройства. Расчетным путем установлена его работоспособность. Разработана и запущена в производство конструкторская документация на изготовление опытного образца.

Захватное устройство для закрепления стержневых образцов, не имеющих захватной части, при испытаниях на растяжение, содержащее удерживающие образец зажимные кулачки, корпус и равномерно распределенные по его периметру рычаги, расположенные под углом к продольной оси образца, шарнирно соединенные с корпусом и с зажимными кулачками, отличающееся тем, что каждый из кулачков установлен диаметрально противоположно относительно образца месту крепления соединенного с ним рычага к корпусу, число кулачков выбрано равным числу рычагов, при этом части рычагов, огибающие образец, выполнены в виде скоб, а для первоначального закрепления образца между корпусом и кулачками установлен упор и упругий элемент, воздействующий на кулачки в направлении к образцу.



 

Похожие патенты:

Изобретение относится к испытательной технике. .

Изобретение относится к испытательной технике, а именно к захватам для испытания гибких материалов на растяжение. .

Изобретение относится к приспособлениям для механических испытаний, а именно к захватам для крепления образцов при испытании на растяжение. .

Изобретение относится к области испытаний материалов на трещиностойкость при действии структурных и температурных усадочных напряжений и старения. .

Изобретение относится к испытательной технике. .

Изобретение относится к испытательной технике, а именно к клиновым захватам для крепления образцов при испытании на растяжение. .

Изобретение относится к приспособлениям для механических испытаний, а именно к захватам для крепления образцов при испытании на растяжение. .

Изобретение относится к испытательной технике, а именно к клиновым захватам для крепления образцов при испытании на растяжение. .

Изобретение относится к устройствам для проведения механических испытаний волоконных световодов и измерения параметров процесса их механической усталости. .

Изобретение относится к захватным устройствам для испытания на растяжение плоских образцов из высокоэластичных материалов. .

Изобретение относится к устройству для испытания обшивок корпуса

Изобретение относится к испытаниям на одноосное сжатие при исследовании механических свойств материала. Устройство содержит одну или несколько равномерно распределенных по длине образца однотипных независимых опор, поддерживающих образец в поперечном направлении. Каждая независимая опора содержит три одинаковых, равномерно распределенных по окружности образца кулачка и механизм для синхронного радиального перемещения кулачков. На поверхности каждого кулачка, обращенной к образцу, установлены датчики, регистрирующие механический контакт между кулачком и образцом, а для управления механизмом перемещения кулачков имеется автоматическая следящая система, способная обеспечивать раздвижение кулачков до положения, при котором хотя бы один из них находился вне контакта с образцом. Технический результат: создание при испытании на сжатие длинномерных стержневых образцов напряженно-деформированного состояния, практически соответствующего одноосному сжатию, и повышение точности результатов испытания. 2 ил.

Изобретение относится к способам испытаний волокон на прочность при растяжении, в частности к способам захвата волокна в зажимах разрывной машины, и к приспособлениям для осуществления таких способов, и может быть использовано в химической, авиационной промышленности. Сущность: фиксируют волокно в приспособлении для фиксации и закрепляют приспособление с волокном в зажимах разрывной машины. Перед фиксацией волокна в приспособлении на оба конца волокна прикрепляют стеклянные шарики диаметром больше диаметра волокна, используют пару втулок в качестве приспособления для фиксации, причем каждая втулка снабжена отверстием с конической частью. Приспособление для фиксации содержит первую и вторую втулки, каждая из которых содержит первую цилиндрическую часть с внутренним диаметром больше диаметра шарика, коническую часть с углом при вершине не менее 70 и не более 100 градусов и вторую цилиндрическую часть с внутренним диаметром больше диаметра волокна, но меньше диаметра стеклянного шарика. Технический результат: повышение надежности фиксации волокон и точности полученных результатов испытаний на разрывной машине. 2 н. и 5 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к машиностроению, а именно к испытательной технике, используемой при испытаниях на усталость. Зажимное устройство содержит стягиваемые с помощью винтов опорные детали, между которыми размещен испытуемый образец и переходные детали, расположенные по обе стороны концевой части испытуемого образца и имеющие участок, выступающий за зону их контакта с опорными деталями в сторону рабочей части образца. Переходные детали выполнены в виде набора гибких плоских пластин, имеющих жесткость на изгиб, меньшую жесткости на изгиб испытуемого образца, длина выступающих участков пластин, непосредственно контактирующих с испытуемым образцом, превышает пять его толщин, а каждая из других не контактирующих с испытуемых образцом пластин имеет длину, меньшую длины предыдущей соседней пластины, либо выступающий участок переходных деталей имеет профиль с переменной плавно меняющейся кривизной, при этом значение радиуса кривизны профилированной поверхности деталей в зоне границы контакта с образцом больше радиуса кривизны рабочей части образца при его изгибе и по направлению удаления от зоны контакта с образцом меняется до значения, которое меньше вышеуказанного радиуса испытуемого образца, твердость поверхности переходных деталей в зоне плавного изменения кривизны этой поверхности ниже твердости поверхности испытуемого образца, а длина выступающих участков переходных деталей превышает три толщины образца. Технический результат - обеспечение защиты образца от излома. 2 н.п. ф-лы, 13 ил.

Изобретение относится к контрольно-измерительной технике, а именно к приборам для исследования плотности жидкостей в широком интервале температур пикнометрическим методом. Неподвижный термостат представляет собой длинный стакан с установленным внутри пикнометром, закрепленный неподвижно на вертикальной массивной стойке. Стакан с пикнометром вставляется в широкую трубу-термостат с циркулирующей термостатирующей жидкостью, подаваемой и отводимой через патрубки, которая в свою очередь устанавливается в теплоизолирующую трубу с толстым слоем пористого асбеста и нагревательную цилиндрическую печь. Вся система крепится на платформе. Двухкапиллярный пикнометр включает заправочный бункер, отградуированные мерные капиллярные трубки и рабочую камеру, состоящую из двух отсеков - верхнего и нижнего. К конусообразному дну верхнего отсека вакуумно-плотно присоединяется система из нескольких последовательно соединенных между собой емкостей малых объемов (~1 см3), а в верхний торец нижнего отсека осесимметрично введена тонкостенная трубочка с термопарами, рабочие спаи которых располагаются соответственно в центре, вблизи противоположных стенок и около дна нижнего отсека с исследуемой жидкостью, для прецизионного контроля истинной температуры исследуемой жидкости. Техническим результатом является увеличение в несколько раз температурного диапазона (интервала) измерений плотности с высокой точностью измерений плотности, значительное упрощение конструкции пикнометра и его эксплуатации, обеспечение равновесных термодинамических условий измерений плотности исследуемых жидкостей в высоком статическом вакууме, без дальнейшего вскрытия пикнометра и нарушения в нем вакуума, в широком температурном диапазоне измерений, получение возможности не только прецизионного контроля истинной температуры исследуемой жидкости, но и возможных температурных градиентов внутри образцов; повышение в несколько раз производительности исследовательского труда и значительная экономия высокочистых веществ при прецизионных измерениях температурной зависимости плотности жидкостей в широкой области температур. 2 н.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к испытательной технике, а именно к образцам для определения прочностных характеристик материалов при пластическом одноосном растяжении, и может найти применение в различных отраслях промышленности. Образец содержит захватные части и рабочую часть в виде стержня. Захватные части выполнены в виде втулок, выполненных из материала, обладающего эффектом обратимой памяти формы, охватывающих стержень. Сечения рабочей части стержня и его концевых зон равны между собою. Технический результат: снижение трудоемкости изготовления образцов, повышение коэффициента использования материала и обеспечение возможности испытания изделий с учетом технологии их изготовления. 6 з.п. ф-лы, 13 ил.

Изобретение относится к области исследования физико-механических свойств композиционных материалов, а именно: к исследованию упруго-прочностных характеристик при сжатии (прочность, модуль упругости). Устройство состоит из двух нижних и двух верхних захватных приспособлений Г-образной формы. В двух верхних захватных приспособлениях выполнены сквозные цилиндрические отверстия, в которых закреплены цилиндрические шарнирные элементы. Устройство фиксируется на образце посредством болтового соединения. В цилиндрических отверстиях расположены цилиндрические направляющие стержни, которые жестко зафиксированы в нижних захватных приспособлениях, а на нижних захватных приспособлениях расположены центральные поддерживающие планки, либо в цилиндрических отверстиях расположены цилиндрические направляющие стержни, а по упомянутым стержням свободно перемещаются независимые поддерживающие планки. Технический результат: добавление конструктивных элементов, позволяющих использовать многоразовые навесные датчики деформации для определения деформационных характеристик, обеспечение осевой устойчивости образца при нагружении, повышение достоверности измеренных данных. 2 н. и 8 з.п. ф-лы, 4 ил.

Новая конструкция держателя колодки для роликовых машин трения относится к области трибологии и предназначено для установки колодок на машинах трения «Амслер» и других аналогичных типов при проведении износных испытаний. Отличие его заключается в том, что в нижней части пластины 1 выполнен паз Б, плоскость симметрии которого проходит через ось основного отверстия, а в центре перемычки паза Б установлен сферический конус 2 для базирования исследуемой колодки, причем в боковых стенках паза В и Г выполнены отверстия с расположенными в них пружинами 3 и винтами 4, предотвращающими выпадение колодки из держателя в процессе сборки. Для проведения измерений электросопротивления трибоконтакта основное отверстие А пластины снабжено электроизолирующим кольцом 5. Техническим результатом является расширение области применения, повышение точности определения коэффициента трения и снижение трудоемкости проведения испытаний. 1 з.п. ф-лы, 1 ил.
Наверх