Способ получения композиционных оптических хемосенсорных пленок

Изобретение относится к нанотехнологиям, в частности к получению оптических структурированных хемосенсорных пленок на основе фотонно-кристаллической опаловой матрицы, которые могут найти применение при экспрессном анализе вредных примесей. Готовую пленку-матрицу с размером монодисперсных сферических частиц кремнезема (МСЧК) от 190 до 250 нм, нанесенную на подложку, однократно погружают вертикально в водно-этаноловый нанозоль сферических частиц кремнезема с размером до 8 нм, модифицированный люминесцентным красителем. После пропитки золем пленку сушат при температуре 20-25°С в течение 15-20 мин. Изобретение обеспечивает получение хемосенсора, в котором роль сенсора выполняют нанопленки мезопористого кремнезема с люминесцентным красителем на поверхности. Открытый характер пор способствует быстрому проникновению анализируемой среды внутрь пленки. Полученный материал обладает высокой прочностью. 2 з.п. ф-лы, 2 ил.

 

Область техники

Изобретение относится к нанотехнологиям, в частности к получению оптических структурированных хемосенсорных пленок на основе фотонно-кристаллической опаловой матрицы, которые предназначены для экспрессного анализа вредных примесей в отходах индустриальных процессов, в окружающей среде и продуктах жизнедеятельности.

Уровень техники

Проблема создания оптических химических и биологических сенсоров для экспрессного анализа окружающей среды, продуктов жизнедеятельности и промышленных отходов на содержание вредных веществ, становится объектом приоритетных исследований в области нанотехнологий за рубежом и в России. В частности, предложен метод получения структурированных оптических хемосенсорных пленок на основе наночастиц кремнезема (размером 5-8 нм), модифицированных органическими красителями. Сердобинцева В.В., Калинин Д.В., Елисеев А.П., Соболев Н.В. // ДАН. 2008. Т.422. №2. С.236-238 /1/, которые получают из нанозолей кремнезема.

Этот материал представляет собой мезопористый кремнезем с площадью внутренней поверхности пор значительно больше 100 м2/г, с люминесцентным красителем, связанным с поверхностью частиц кремнезема непосредственно водородными связями или с участием длинных цепей сильноосновных катионов четвертичного аммония. Сенсорные свойства пленок подтверждены оптическим откликом, выраженным в тушении люминесценции флуоресцеина в результате присоединения аммиака.

Недостатком данного вида сенсорного материала является очень маленький размер пор материала (порядка 1-2 нм), что затрудняет быстрое проникновение анализируемой жидкости или газа внутрь пленки. Поэтому в процессе анализа в качестве рецепторов выступает в основном краситель на поверхности пленки и соответственно уменьшение интенсивности фотолюминесценции (ФЛ) красителя после захвата анализируемого вещества также связано главным образом с поверхностью пленки.

Предполагается, что более перспективным материалом для оптических сенсорных пленок могут быть фотонно-кристаллические (ФК) опаловые пленки оптического диапазона с размером монодисперсных сферических частиц кремнезема (МСЧК) от 180 до 300 нм, с помощью фотонных свойств которых может быть усилен ФЛ эффект. Монокристаллические опаловые фотонно-кристаллические (ФК) пленки (указанного размера) получают путем нанокристаллизации методом подвижного мениска на твердой подложке.

Функционально активный, в отношении определяемых химических и биологических веществ, органический люминесцентный краситель должен быть зафиксирован в структуре ФК пленки. Размер пор в ФК структуре на порядок больше, чем в мезопористом кремнеземе на поверхности МСЧК. Таким путем может быть создан эффективный оптический химический сенсор, измеряемым параметром которого является изменение возбуждаемой фотолюминесценции (ФЛ) красителя при взаимодействии его с определяемыми веществами.

Опаловые ФК представляют собой в идеале периодическую наноструктуру, в которой существует система энергетических зон, где запрещено существование электромагнитного излучения с длинами волн, соизмеримыми с периодом структуры конкретного направления запрещенная зона (ЗЗ). Yablo-novitch. // Phys. Rev. Lett. 1987. V.58. P.2059-2061 /2/.

Предполагается, что ФЛ, возбужденная в ФК, может усиливаться ФК эффектом.

ФК пленки на основе МСЧК в качестве оптических сенсоров имеют трудно преодолимый недостаток. Он обусловлен невозможностью прямой модификации поверхности МСЧК органическими красителями в суспензии частиц до выращивания ФК пленки. Это связано с наличием отрицательного заряда поверхности МСЧК и двойного диффузионного слоя противоионов вокруг них, препятствующего присоединению органических молекул. Айлер Р. Химия кремнезема. 1982. М. «Мир». С.1106 /3/.

Стойкое окрашивание готовых сухих ФК пленок также невозможно в связи с инертностью поверхности МСЧК.

Задачей изобретения является разработка способа получения композиционных оптических хемосенсорных пленок на основе фотонно-кристаллической опаловой матрицы, и мезопористого кремнезема с помощью которого краситель-рецептор может быть размещен на поверхности МСЧК в ФК структуре матрицы и таким путем резко увеличивается рабочая поверхность сенсора и многократно усиливается за счет ФК дефекта матрицы фотолюминесценция, как главный показатель сенсорной активности.

Раскрытие изобретения

Сущность изобретения состоит в том, что в приготовлении композиционных оптических сенсорных пленок на основе ФК опаловой матрицы используют готовые монокристаллические ФК пленки методика, получения которых описана в кн. Калинин Д.В., Сердобинцева В.В., Шабанов В.Ф. // ДАН. 2008. Т.420. №2. С.178-181 /4/.

Размер МСЧК в пленках составлял от 195, 220 и 245 (±5) нм и пленки имели дифракционную окраску от плоскости (111) соответственно голубую, зеленую и красную. Толщина пленок составляла около 1 мкм (5-6 слоев МСЧК), (толщина пленки регулируется концентрацией МСЧК в суспензии при выращивании методом подвижного мениска).

Данные ФК пленки пропитывают золем наночастиц кремнезема, модифицированного красителем. Золь предварительно разбавляют этанолом в соотношении золь:этанол как 1:10. Золь приготавливают по методике, изложенной в кн. Сердобинцева В.В., Калинин Д.В., Елисеев А.П., Соболев И.В. // ДАН. 2008. Т.422. №2. С.236-238 /1/.

Пропитка ФК пленок золем и отложение мезопористого кремнезема в порах ФК структуры осуществлялось путем однократного погружения ФК пленки в золь и последующей сушки в вертикальном положении.

При этом происходит слабое изменение дифракционной окраски пленки в сторону увеличения длины волны дифрагированного света. Это означает, что при пропитке золем каждая частица окружается пленкой золя, происходит некоторое «раздвигание» МСЧК в структуре, а при высыхании золя мезопористые пленки полностью покрывают МСЧК, образуя мостики между ними, о чем свидетельствует резко возрастающая механическая прочность ФК пленок. Таким образом, поры ФК структуры остаются открытыми, обеспечивая хорошую газо- и водопроницаемость. Интенсивность дифракции не изменяется, но параметр ФК решетки возрастает на 8-10 нм, что и приводит к увеличению длины дифрагированной волны. Учитывая величину смещений максимумов спектров отражения и соответствующие им размеры МСЧК до и после пропитки золем кремнезема, можно оценить толщину мезопористых пленок на МСЧК, которая составляет не более 10-12 нм.

Обоснование введенных признаков

Для получения композиционной оптической химической сенсорной пленки впервые использованы готовые ФК пленки, с размером МСЧК 190, 220, 245 (±5) нм, обладающие хорошей газо- и водопроницаемостью и созревшие нанозоли кремнезема с размером частиц 5-8 нм в смеси воды и этанола, в которых люминесцентный органический краситель присоединяется к поверхности наночастиц. Пропитка ФК пленок жидким нанозолем и их последующая сушка приводит к появлению на поверхности МСЧК в ФК структуре тонких (до 10-12 нм) пленок мезопористого кремнезема, содержащего люминесцентный краситель. Таким образом, создается композиция ФК пленки, обеспечивающей фотонные эффекты, и мезопористого кремнезема на поверхности МСЧК, обеспечивающего ФЛ и соответственно сенсорную чувствительность, а также механическую прочность композиционной сенсорной пленки. На фиг.1 представлены спектры отражения ФК композиционных пленок с размером МСЧК 190±5 нм (1); 220±5 нм (2); 245±5 нм (3), в которых на поверхности МСЧК отложены нанопленки мезопористого кремнезема. Интенсивность ФЛ композиционных пленок оказалась в 5, 8, 3 (соответственно, для голубой, зеленой, красной) раза выше, чем у контрольной мезопористой сенсорной пленки с такой же толщиной, как и у композиционной пленки, фиг.2. На рисунке представлены: спектры фотолюминесценции (ФЛ) композиционных сенсорных пленок с размером частиц 190 нм (1), 220 нм (2) 245 нм (3) в сравнении со спектром ФЛ мезопористого эталона (3а).

Этот новый важный положительный фотонный эффект наиболее выражен для зеленой пленки, где наблюдается перекрытие ФЗЗ (максимум 512 нм) пленки и возбужденного ФЛ излучения (максимум 510 нм). Это свидетельствует о том, что в композиционной сенсорной пленке существуют пространственные упорядоченные локализованные фотонные состояния, действующие как микрорезонаторы, которые приводят к усилению ФЛ излучения и, следовательно, значительному повышению сенсорной чувствительности пленки.

Таким образом, заявленная совокупность признаков позволяет в полной мере использовать оптические и структурные особенности ФК пленки как матрицы, а с помощью пропитки нанозолями и отложения на поверхности МСЧК пленок сенсорно чувствительного модифицированного мезопористого кремнезема, обойти препятствие к использованию ФК пленок, обусловленное невозможностью прямого присоединения органических красителей к поверхности МСЧК, и использовать композиционный материал в качестве сенсорного материала, более высокого качества и чувствительности. Поскольку площадь поверхности внутренних пор ФК матрицы составляет до 80-100 м2/г вещества, то «рабочая» поверхность мезопористых пленок, покрывающих поверхность пор ФК матрицы, резко возрастает, открытый характер пор способствует быстрому проникновению анализируемых газов и жидкостей внутрь композиционной сенсорной пленки. Важным положительным качеством является также высокая прочность материала.

Пример осуществления способа

При изготовлении композиционных сенсорных пленок использованы три готовые монокристаллические ФК пленки на покровном стекле с толщиной около 1 мкм, нанокристаллизация которых выполнена соответственно из трех спиртовых суспензий с размером МСЧК 190, 220, 245 (±5) нм. Площадь пленок составляла 100 мм. Спектры отражения от каждой представлены на фиг.1 (соответственно кривые 1, 2, 3).

Водно-этаноловый золь готовили с использованием смеси реагентов в соотношении тетраэтоксисилан:вода (подкисленная HCl до pH 1,5-2):этанол=1:6:5. Для созревания золя кремнезема смесь реагентов выдерживали 3 часа при 70°C. В качестве люминесцентного красителя использовали флуоресцеин в концентрации 1 мг на 100 мг золя. Перемешивали золь до достижения его равномерного окрашивания. Затем в окрашенный золь вводили цетилтриметиламмоний хлорид (ЦТМА'Cl) с мольным отношением UTMA'Cl:SiO2 около 0,5.

Готовый золь разбавляли этиловым спиртом до объемного отношения золь:этанол как 1:10.

Покровные стекла с ФК пленками погружали в золь на 1 минуту, затем извлекали и высушивали в вертикальном положении в течение 15 минут на воздухе при температуре 20-25°C. Спектры ФЛ композиционных пленок приведены на фиг.2 (1, 2, 3 соответственно) в сравнении со спектром ФЛ сенсорной пленки, полученной непосредственно из нанозоля (спектр 3a).

Источники информации

1. Сердобинцева В.В., Калинин Д.В., Елисеев А.П., Соболев Н.В. // ДАН. 2008. Т.422. №2. С.236-238.

2. Yablonovitch. // Phys. Rev. Lett. 1987. V.58. P.2059-2061.

3. Айлер P. Химия кремнезема. 1982. M.: «Мир». С.1106.

4. Калинин Д.В., Сердобинцева В.В., Шабанов В.Ф. // ДАН. 2008. Т.420. №2. С.178-181.

1. Способ получения композиционных оптических хемосенсорных пленок, включающий использование готовой фотонно-кристаллической пленки, получаемой из этаноловой суспензии монодисперсных сферических частиц кремнезема, и введение в нее органического красителя, отличающийся тем, что используют фотонно-кристаллическую пленку-матрицу с размером частиц от 190 до 245(±5) нм, которую пропитывают водно-этаноловым нанозолем сферических частиц кремнезема с размером до 8 нм, модифицированным красителем флуоресцеином, и стабилизированным цетилтриметиламмония хлоридом (ЦТМА'Cl), и затем сушат.

2. Способ по п.1, отличающийся тем, что пропитку производят золем, предварительно разбавленным этиловым спиртом в объемном соотношении золь:этанол=1:10.

3. Способ по п.1, отличающийся тем, что пропитку осуществляют путем вертикального однократного погружения фотонно-кристаллической пленки, нанесенной на подложку, в золь для пропитки и последующего высушивания в течение 15-20 мин при температуре 20-25°С.



 

Похожие патенты:

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств.

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств.

Изобретение относится к органической химии, а именно к новому типу соединений - N-алкилазакраунсодержащим стириловым красителям общей формулы I: в которой А+ - гетероциклический остаток формулы (II) или (III): В в формуле (I) - фрагмент N-алкилбензоазакраун-эфира формулы (IV): где R6 - низший алкил; n=0-3; к способу их получения, а также к новым композитным пленочным материалам на основе красителей (I), проявляющим эффективные оптические хемосенсорные свойства по отношению к катионам щелочных и щелочноземельных металлов.

Изобретение относится к медицинской технике, а именно к устройствам для определения концентрации иммуноактивных объектов в пробах биологических жидкостей. .

Изобретение относится к области медицинской техники и представляет собой устройство для калибровки медицинских диагностических спектрофотометрических приборов.

Изобретение относится к области медицинской техники и представляет собой устройство для калибровки медицинских диагностических спектрофотометрических приборов.
Изобретение относится к аналитической химии органических соединений и может быть использовано для идентификации синтетических пищевых красителей Е102, Е110, Е122, Е124, Е129, Е132 при аналитическом контроле пищевых продуктов и фармацевтических препаратов.
Изобретение относится к аналитической химии органических соединений и может быть использовано для определения красного природного красителя кармина в присутствии красного синтетического красителя Е122 при аналитическом контроле водных растворов и пищевых продуктов.

Изобретение относится к технической физике и может найти применение в текстильной промышленности, например для определения коэффициента диффузии красителя. .

Изобретение относится к способу получению структурированных хемосенсорных пленок на основе наночастиц кремнезема, модифицированного органическими растворителями, который включает получение золя сферических частиц кремнезема, модификацию полученного золя органическим красителем, нанесение модифицированного золя на подложку, отличающийся тем, что в качестве органического красителя используют флуоресцеин, который вводят при температуре 60-80°С в созревший золь сферических частиц кремнезема в смеси вода-этанол с pH 1,5-2 в соотношении флуоресцеин/золь не более 1/100, затем в полученный окрашенный золь вводят поверхностно-активное вещество (ПАВ) цетилтриметиламмония хлорид при соотношении ПАВ/золь = 0,3-0,8.

Изобретение относится к золю кремнекислоты и способу получения бумаги, использующему этот золь. .

Изобретение относится к способам получения сферического силикагеля, применяемого в хроматографии для выделения, очистки и анализа химических соединений в биологических объектах, в химической, фармацевтической и пищевой промышленности, и позволяет повысить удельную поверхность продукта при сохранении его высокой чистоты.

Изобретение относится к способам получения стабильного концентрированного гидрозоля диоксида кремния. .
Наверх