Способ получения композиционной оптической хемосенсорной пленки



Способ получения композиционной оптической хемосенсорной пленки
Способ получения композиционной оптической хемосенсорной пленки

Владельцы патента RU 2399585:

Учреждение Российской академии наук Институт геологии и минералогии им. В.С. Соболева Сибирского отделения РАН (Институт геологии и минералогии СО РАН, ИГМ СО РАН) (RU)

Изобретение относится к нанотехнологиям, в частности к получению водостойких и термостойких структурированных хемосенсорных пленок на основе фотонно-кристаллической опаловой матрицы, которые могут найти применение при экспрессном анализе вредных примесей в газообразных и жидких отходах. Способ включает термообработку монокристаллической фотонно-кристаллической пленки с размером частиц 185-250 нм при температуре 350-500°С в воздушной среде в течение 120-30 минут соответственно, затем пропитку разбавленным этаноловым нанозолем кремнезема с размером частиц до 8 нм, стабилизированного цетилтриметиламмоний хлоридом и модифицированного люминесцентным органическим красителем, и последующее высушивание полученной композиционной оптической хемосенсорной пленки. Изобретение позволяет получить водостойкие, механически прочные и термостойкие пленки. 1 з.п. ф-лы, 2 ил.

 

Область техники

Изобретение относится к нанотехнологиям, в частности к получению оптических структурированных композиционных хемосенсорных пленок на основе монокристаллической фотонно-кристаллической (ФК) опаловой матрицы, и предназначенных для экспрессного анализа вредных примесей в газообразных и водных промышленных отходах, в том числе и при повышенных температурах, мониторинга состояния воздушной и водной природной окружающей среды и продуктов жизнедеятельности.

Уровень техники

Создание высокочувствительных химических сенсоров с экспрессной оптической регистрацией результатов анализа на вредные вещества в окружающей среде, индустриальных отходах и продуктах жизнедеятельности, способных одинаково успешно работать как в газовой, так и особенно в водной среде, приобретает исключительную актуальность и является предметом приоритетных исследований за рубежом и в России. В частности, разработана методика получения сенсорных ФК пленок, состоящих из сферических монодисперсных частиц органических полимеров в пределах оптического диапазона (латекса, полистирола, полиметилметакрилата), в которые на стадии полимеризации и роста частиц вводится органический люминесцентный краситель и захватывается растущими частицами. Молекулы красителя, выступая на поверхность частиц, служат рецепторами вредных веществ, а снижение интенсивности, возбуждаемой фотолюминесценции (ФЛ) красителя в результате присоединения к нему определяемых веществ, является оптически измеряемым параметром. При этом ФК структура способна заметно усиливать ФЛ (Якиманский А.В., Меньшикова А.Ю., Евсеева Т.Г., Шевченко Н.Н., Билибин А.Ю. // Российские нанотехнологии, 2006, Т. 1, №1-2, С.183-190) /1/.

Недостатки данного вида сенсорных пленок определяются характером самого материала (органические полимеры) сферических частиц.

Во-первых, сенсорная чувствительность ограничена числом молекул красителя-рецептора, выступающего на поверхность частиц (на границу фазового раздела), а гладкий характер поверхности частиц не позволяет увеличить сенсорную чувствительность за счет микрорельефа поверхности, поскольку краситель зафиксирован. Также невозможно увеличить чувствительность сенсора путем создания структурированных ансамблей с его участием на поверхности частиц.

Во-вторых, сенсорные ФК пленки на основе органических полимеров не являются прочными, сферические частицы в их структуре слабо связаны друг с другом, в результате чего пленки разваливаются в водной среде и способны работать преимущественно в газовой атмосфере.

И, в-третьих, органические полимеры не являются термостойкими и сенсорные пленки на их основе не могут применяться при температуре анализируемой среды уже выше 100°С, поскольку происходит деформация ФК структуры.

Альтернативой ФК структурам на основе органических полимеров, в качестве носителя рецептора-красителя, являются неорганические монодисперсные сферические частицы кремнезема (МСЧК), размером 190-260 нм, слагающие регулярные структуры природного и искусственного опала, а также ФК пленки (Калинин Д.В., Сердобинцева В.В., Шабанов В.Ф. // ДАН. 2008. Т.420. №2. С.178-181) /2/. Использование ФК пленок, сложенных МСЧК, сдерживается трудностями, связанными с невозможностью прямой модификации поверхности частиц люминесцентными красителями (Айлер Р. Химия кремнезема. 1982. М. «Мир». С.1106) /3/, и невозможностью введения красителей в щелочную суспензию на стадии роста МСЧК в связи с нарушением коагуляционной устойчивости суспензий. Однако краситель-рецептор может быть зафиксирован на поверхности наночастиц кремнезема размером 5-8 нм в кислых нанозолях. С помощью таких нанозолей получают мезопористые сенсорные оптические пленки. (Сердобинцева В.В., Калинин Д.В., Елисеев А.П., Соболев Н.В. // ДАН. 2008. Т.422. №2. С.236-238).

С учетом этого возможна модификация поверхности монодисперсных сферических частиц кремнезема (МСЧК) красителями путем отложения на них в пористой структуре ФК пленки тонкого слоя мезопористого кремнезема (с толщиной до 10-12 нм) из разбавленных нанозолей. В итоге получают композиционные оптические сенсорные пленки на основе ФК опаловой матрицы и мезопористого кремнезема с красителем на поверхности МСЧК, сенсорная чувствительность которых усилена ФК эффектом структуры матрицы. Такие пленки могут успешно работать в газовой среде. Но в водной среде в связи с гидратацией поверхности МСЧК они неустойчивы и разрушаются. Наноразмерная пленка мезопористого кремнезема на поверхности МСЧК не защищает их от гидратации, поскольку вода свободно проникает к поверхности частиц через мезопоры.

Задачей изобретения является разработка способа получения водостойких, механически прочных и термостойких композиционных оптических хемосенсорных ФК пленок на основе кремнезема.

Раскрытие изобретения

Сущность изобретения состоит в том , что в приготовлении водостойких и термостойких с повышенной чувствительностью композиционных оптических хемосенсорных ФК пленок используют монокристаллические ФК опаловые пленки с размерами частиц 185-250 нм, полученные путем нанокристаллизации монодисперсных сферических частиц кремнезема (МСЧК) из этаноловых суспензий при испарении этанола, которые подвергают термической обработке при 350-500°С в течение 120-30 минут соответствено, затем эти термообработанные ФК пленки, которые служат матрицей, пропитывают нанозолем частиц кремнезема размером до 8 нм, стабилизированным цетилтриметиламмоний хлоридом (ЦТМА′Cl) в мольном соотношении (ЦТМА′Cl):SiO2 около 0,5, и модифицированным органическим люминесцентным красителем.

Нанозоль перед пропиткой разбавляют этанолом в соотношении нанозоль:этанол как 1:10.

Принимая во внимание то, что МСЧК сложены наночастицами размером от 3 до 8 нм (Сердобинцева В.В., Калинин Д.В., Восель С.В. // Геология и геофизика 1998, Т.39, №.8. С.1116-1120) /5/, экспериментально установлено, что МСЧК способны частично остекловываться и спекаться при сравнительно невысоких температурах в интервале от 350°С до 500°С за время от 120 минут до 30 минут соответственно. При этом остекловывании не нарушается сферическая форма частиц, но происходит уменьшение их диаметра на 5-8%. Структура ФК пленки и ее внутренняя пористость сохраняется, параметры решетки уменьшаются и соответственно происходит сдвиг максимумов фотонных запрещенных зон (ФЗЗ) в сторону более коротких длин волн на 15-20 нм. В структуре пленки МСЧК также спекаются друг с другом и в связи с этим структура приобретает повышенную прочность. Но самое важное то, что термообработанные ФК пленки теряют способность к гидратации поверхности, разбуханию МСЧК и разрушению пленок при контакте с водой.

При отмеченном сжатии ФК структуры возникает система микротрещин, направления которых подчинены рядам укладки МСЧК и в целом система микротрещин подчеркивает гексагональную упаковку частиц в гранецентрированную кубическую структуру.

Пропитка монокристаллической ФК пленки-матрицы нанозолем и отложение мезопористого кремнезема на поверхности МСЧК в порах ФК структуры и в системе микротрещин осуществлялась путем однократного погружения ФК пленки в стабилизированный цетилтриметиламмоний хлоридом (ЦТМА′Cl) и модифицированным органическим люминесцентным красителем нанозоль и последующей сушки на воздухе в вертикальном положении. При этом ФК свойства материала сохраняются, о чем свидетельствует наличие ФЗЗ фиг.1, а пористая система композиционной сенсорной пленки на основе ФК матрицы остается открытой, в результате получается композиционнная термостойкая хемосенсорная ФК пленка.

Обоснование введенных признаков

Для получения водостойких и термостойких композиционных оптических хемосенсорных пленок впервые использованы монокристаллические ФК пленки, подвергшиеся термообработке в воздушной среде в закрытой муфельной печи в интервале температуры 350-500°С в течение 120-30 минут соответственно. Эта обработка придает ФК матрице новое качество - водостойкость, термостойкость и повышенную прочность благодаря спеканию МСЧК. Вместе с тем при спекании и «усадке» ФК структуры возникает система микротрещин, расположение которых контролируется укладкой МСЧК в регулярную структуру и, следовательно, микротрещины в целом также имеют близкое к регулярному пространственное расположение. Наличие дополнительных к пористости ФК матрицы полостей микротрещин способствует более быстрому проникновению газов и жидкостей в структуру ФК матрицы и создает дополнительные поверхности для отложения мезопористого кремнезема.

Данные термообработанные водостойкие и термостойкие монокристаллические ФК пленки-матрицы, которые обладают отмеченными выше преимуществами по сравнению с нетермообработанными ФК пленками, подвергались пропитке нанозолями кремнезема в смеси воды и этанола с размером частиц до 8 нм, поверхность которых модифицирована люминесцентным красителем. Пропитка термообработанных ФК пленок-матриц жидким нанозолем и их последующая сушка приводят к появлению на поверхности МСЧК в порах структуры ФК матрицы и на поверхности МСЧК в микротрещинах тонких (до 10-12 нм) пленок мезопористого кремнезема, содержащего люминесцентный краситель-рецептор. Таким образом, создается композиция термообработанной водостойкой и термостойкой ФК пленки, обеспечивающей фотонные эффекты и прочностные свойства сенсорной пленки, и мезопористого кремнезема на поверхности МСЧК, обеспечивающего фотолюминесценцию (ФЛ) и соответственно сенсорную чувствительность.

На фиг.1 для трех композиционных пленок с размером МСЧК 190±5 нм (кривая 1), 220±5 нм (кривая 2), 245±5 нм (кривая 3) приведены спектры отражения для ФЗЗ, которые показывают, что ФК свойства пленок-матриц сохраняются после термообработки и отложения на поверхности МСЧК мезопористого кремнезема. На фиг.2 представлены спектры ФЛ, интенсивность которых для композиционных пленок с размером МСЧК 190±5 и 220±5 нм (кривые 1 и 2) практически совпадают и в три раза выше, чем интенсивность ФЛ от мезопористой пленки-эталона (кривая 3а). Для композиционной пленки с размером частиц 245±5 нм (кривая 3) интенсивность ФЛ в 4,5 раза выше интенсивности ФЛ эталона. Это свидетельствует о том, что в композиционных сенсорных пленках с термообработанной ФК пленкой-матрицей существуют пространственные упорядоченные локализованные фотонные состояния, которые действуют как микрорезонаторы и во всех случаях приводят к усилению ФЛ излучения, обеспечивая высокую чувствительность сенсорной пленки.

Таким образом, термообработка ФК пленок с разным размером МСЧК, обеспечивая водостойкость, термостойкость, повышенную прочность и высокую газо- и водопроницаемость сенсорных композиционных пленок, позволяет в то же время использовать оптические особенности ФК пленки-матрицы для усиления ФЛ излучения, а с помощью пленок мезопористого кремнезема, модифицированного красителем-рецептором, покрывающего поверхность МСЧК, обеспечить расположение люминесцентного красителя-рецептора на поверхности МСЧК.

Пример осуществления способа

При изготовлении термостойких, водостойких композиционных оптических хемосенсорных ФК пленок использованы образцы монокристаллических ФК пленок кремнезема с толщиной около 1 мкм, нанокристаллизация которых осуществлена соответственно из трех суспензий МСЧК в этаноле с размером МСЧК 190, 220, 245 (±5) нм при испарении этанола. Площадь пленок составляла 100 мм2. Пленки термообрабатывали при температурах 350, 400, 450, 500°С в течение 120, 90, 60, 30 минут соответственно в воздушной среде с получением сопоставимых результатов по водостойкости - получали ФК пленки-матрицы. В качестве примера приведены данные для пленок термообработанных при 400°С и 60 мин.

Нанозоль с размером частиц кремнезема до 8 нм для пропитки ФК пленок-матриц готовили с использованием смеси реагентов в соотношении тетраэтоксисилан: вода (подкисленная HCl до рН 1,5-2):этанол=1:6:5. Для созревания золя кремнезема смесь реагентов выдерживали 3 часа при 70°С. В качестве люминесцентного красителя использовали флуоресцеин, родамин 6 ж, акрилфламин в концентрации 1 мг на 100 мг золя. Перемешивали нанозоль до достижения его равномерного окрашивания. Затем в окрашенный нанозоль вводили цетилтриметиламмоний хлорид (ЦТМА′Cl) с мольным отношением ЦТМА′Cl:SiO2 около 0,5.

Готовый нанозоль разбавляли этанолом до объемного отношения золь:этанол как 1:10.

Термообработанные ФК пленки-матрицы погружали в нанозоль на 1 минуту, затем извлекали и высушивали в вертикальном положении в течение 15 минут на воздухе при температуре 20-25°С. Спектры отражения от пленок с флюоресцеином представлены на фиг.1 (соответственно кривые 1, 2, 3).

Полученные термостойкие композиционные оптические хемосенсорные пленки погружали в воду на 12 часов, после чего проверяли спектры ФЗЗ и констатировали неизменность свойств ФК структур.

Источники информации

1. Якиманский А.В., Меньшикова А.Ю., Евсеева Т.Г., Шевченко Н.Н., Билибин А.Ю. // Российские нанотехнологии, 2006, Т.1, №1-2. С.183-190.

2. Калинин Д.В., Сердобинцева В.В., Шабанов В.Ф. // ДАН. 2008. Т.420. №2. С.178-181.

3. Айлер Р. Химия кремнезема. 1982. М. «Мир». С.1106.

4. Сердобинцева В.В., Калинин Д.В., Елисеев А.П., Соболев Н.В. // ДАН. 2008. Т.422. №2. С.236-238.

5. Сердобинцева В.В., Калинин Д.В., Восель С.В. // Геология и геофизика 1998, Т.39, №.8. С.1116-1120.

1. Способ получения композиционной оптической хемосенсорной пленки из монокристаллической фотонно-кристаллической пленки, полученной из этаноловой суспензии монодисперсных сферических частиц кремнезема, и мезопористого кремнезема, полученного из этанолового нанозоля с размером частиц до 8 нм, отличающийся тем, что монокристаллическую фотонно-кристаллическую пленку с размером частиц 185-250 нм предварительно выдерживают при температуре 350-500°С в воздушной среде в течение 120-30 мин соответственно и затем полученную после термообработки фотонно-кристаллическую пленку-матрицу пропитывают этаноловым нанозолем кремнезема с размером частиц до 8 нм, стабилизированного цетилтриметиламмоний хлоридом и модифицированного люминесцентным органическим красителем, причем перед пропиткой стабилизированный и модифицированный этаноловый нанозоль предварительно разбавляют этанолом в объемном соотношении нанозоль:этанол=1:10 с последующим высушиванием полученной композиционной оптической хемосенсорной пленки.

2. Способ по п.1, отличающийся тем, что пропитку осуществляют путем однократного погружения термообработанной фотонно-кристаллической пленки-матрицы в нанозоль и последующего высушивания в течение 15-20 мин при температуре 20-25°С.



 

Похожие патенты:

Изобретение относится к нанотехнологиям, в частности к получению оптических структурированных хемосенсорных пленок на основе фотонно-кристаллической опаловой матрицы, которые могут найти применение при экспрессном анализе вредных примесей.

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств.

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств.

Изобретение относится к органической химии, а именно к новому типу соединений - N-алкилазакраунсодержащим стириловым красителям общей формулы I: в которой А+ - гетероциклический остаток формулы (II) или (III): В в формуле (I) - фрагмент N-алкилбензоазакраун-эфира формулы (IV): где R6 - низший алкил; n=0-3; к способу их получения, а также к новым композитным пленочным материалам на основе красителей (I), проявляющим эффективные оптические хемосенсорные свойства по отношению к катионам щелочных и щелочноземельных металлов.

Изобретение относится к медицинской технике, а именно к устройствам для определения концентрации иммуноактивных объектов в пробах биологических жидкостей. .

Изобретение относится к области медицинской техники и представляет собой устройство для калибровки медицинских диагностических спектрофотометрических приборов.

Изобретение относится к области медицинской техники и представляет собой устройство для калибровки медицинских диагностических спектрофотометрических приборов.
Изобретение относится к аналитической химии органических соединений и может быть использовано для идентификации синтетических пищевых красителей Е102, Е110, Е122, Е124, Е129, Е132 при аналитическом контроле пищевых продуктов и фармацевтических препаратов.
Изобретение относится к аналитической химии органических соединений и может быть использовано для определения красного природного красителя кармина в присутствии красного синтетического красителя Е122 при аналитическом контроле водных растворов и пищевых продуктов.

Изобретение относится к нанотехнологиям, в частности к получению оптических структурированных хемосенсорных пленок на основе фотонно-кристаллической опаловой матрицы, которые могут найти применение при экспрессном анализе вредных примесей.

Изобретение относится к способу получению структурированных хемосенсорных пленок на основе наночастиц кремнезема, модифицированного органическими растворителями, который включает получение золя сферических частиц кремнезема, модификацию полученного золя органическим красителем, нанесение модифицированного золя на подложку, отличающийся тем, что в качестве органического красителя используют флуоресцеин, который вводят при температуре 60-80°С в созревший золь сферических частиц кремнезема в смеси вода-этанол с pH 1,5-2 в соотношении флуоресцеин/золь не более 1/100, затем в полученный окрашенный золь вводят поверхностно-активное вещество (ПАВ) цетилтриметиламмония хлорид при соотношении ПАВ/золь = 0,3-0,8.

Изобретение относится к золю кремнекислоты и способу получения бумаги, использующему этот золь. .

Изобретение относится к способам получения сферического силикагеля, применяемого в хроматографии для выделения, очистки и анализа химических соединений в биологических объектах, в химической, фармацевтической и пищевой промышленности, и позволяет повысить удельную поверхность продукта при сохранении его высокой чистоты.

Изобретение относится к способам получения стабильного концентрированного гидрозоля диоксида кремния. .

Изобретение относится к нанотехнологиям, в частности к получению оптических структурированных хемосенсорных пленок на основе фотонно-кристаллической опаловой матрицы, которые могут найти применение при экспрессном анализе вредных примесей.
Наверх