Гидроэлектроводородный генератор (гэвг)

Изобретение относится к энергетическому машиностроению и может быть использовано при создании генератора для получения в промышленных масштабах электроэнергии и водорода за счет преобразования потенциальной энергии реки в электрическую и химическую энергию путем электролиза. Гидроэлектроводородный генератор (ГЭВГ) содержит емкость, заполненную водным раствором электролита, установленную на вертикальном валу и связанную с приводом вращения, одним электродом является корпус емкости, а второй электрод закреплен на неподвижной раме с возможностью вертикального перемещения, каналы подачи воды и водного раствора электролита, отвода продуктов электролиза и емкость изолированы друг от друга и от окружающей среды с помощью воздушного затвора, снаружи емкости дополнительно установлен неподвижный чехол, внутри которого для создания между емкостью и чехлом необходимого количества тепла имеются электрические нагреватели, питающиеся частью выработанной гидроэлектроводородным генератором электрической энергией, а вертикальный вал емкости с водным раствором электролита соединен с валом гидротурбины через двухступенчатый цилиндрический редуктор с эвольвентным зацеплением, передаточное число одной ступени передачи И 1=10 и второй ступени - И 2=11,2, позволяющим вращать емкость с водным раствором электролита до 20000 об/мин. Изобретение позволит обеспечить повышение КПД генератора, упрощение процесса электролиза и повышение его эффективности, а также уменьшение стоимости гидроэлектроводородного генератора. 1 ил.

 

Изобретение относится к энергетическому машиностроению и может быть использовано при создании генератора для получения в промышленных масштабах электроэнергии и водорода за счет преобразования потенциальной энергии реки в электрическую и химическую энергии путем электролиза.

Из существующего уровня техники известно устройство для преобразования механической и тепловой энергий в электрическую и химическую энергии путем разложения воды электролизом водного раствора электролита и получения при этом водорода, кислорода, электроэнергии и холода (1). Устройство снабжено теплообменником, подведенным внутрь емкости, электроды или коротко замкнуты между собой, или соединены в контур через потребитель электроэнергии. Емкость установлена на горизонтальном валу с возможностью обеспечения расчетной угловой скорости ее вращения. Устройство также имеет каналы для подвода начальных и отвода конечных продуктов электролиза.

Недостатком известного устройства является сложная конструкция электродов, наличие множества уплотнений и узлов креплений внутри емкости, а также малый теплообмен с окружающей средой и нахождение теплообменника внутри вращающейся емкости.

Получению требуемого технического результата в данном устройстве препятствует низкая теплообменная способность известного устройства с окружающей средой.

Известно также устройство для преобразования энергии (2).

Устройство для преобразования энергии путем электролиза содержит емкость с возможностью вращения, заполненную водным раствором электролита, которая установлена на вертикальном валу и связана с приводом вращения, электроды, а также каналы подвода водного раствора электролита и отвода продуктов электролиза, с возможностью подачи в основание емкости умягченной и нагретой до 90°С воды, при этом наружная поверхность емкости выполнена ребристой для отбора тепла из окружающей среды, а внутренняя поверхность - в виде усеченного конуса для обеспечения циркуляции электролита в процессе вращения электролита.

Недостатком известного устройства является то, что для постоянной подачи воды в емкость в ее основании необходимо иметь дополнительный и дорогостоящий узел подготовки воды, при этом отбор тепла из окружающей среды в зимнее время будет недостаточным для разложения электролита, а также привод вращения работает от электродвигателя с большим расходом электроэнергии.

Целью изобретения является повышение КПД гидроэлектроводородного генератора (ГЭВГ) за счет исключения расхода электроэнергии для вращения вала, получение водорода и электроэнергии в промышленных масштабах, упрощение процесса электролиза, повышение эффективности электролиза путем подачи постоянного количества тепловой энергии независимо от времени года на наружную поверхность вращающейся емкости.

Поставленная цель достигается тем, что емкость с электролитом гидроэлектроводородного генератора снаружи имеет неподвижный чехол, на внутренней стороне которого установлены электрические нагреватели, питающиеся частью электрической энергии, вырабатываемой гидроэлектроводородным генератором после достижения пороговой частоты вращения его емкости с водным раствором электролита, то есть при которой можно получать от ГЭВГ электроэнергию для внешней нагрузки, а также тем, что емкость с водным раствором электролита вращается от вала гидротурбины без расхода электроэнергии, соединенного с ГЭВГ через двухступенчатый цилиндрический редуктор с эвольвентным зацеплением, в котором передаточное число одной ступени передачи И 1=10 и второй ступени - И 2=11,2, позволяющим вращать емкость с водным раствором электролита более 20000 об/мин.

К техническим результатам, получаемым от реализации данного изобретения, можно отнести повышение КПД устройства за счет использования для вращения вала емкости ГЭВГ не электрическую энергию, а механическую энергию вращающегося вала гидротурбины и постоянный подвод тепловой энергии к наружной поверхности емкости.

Существенным отличием является то, что емкость ГЭВГ, установленная на вертикальном валу, соединена валом гидротурбины через редуктор с заданным передаточным числом, позволяющем вращать ее с водным раствором электролита более 20000 об/мин и получать водород, кислород и электроэнергию в промышленных масштабах, а также создание между емкостью ГЭВГ и наружным чехлом в зимнее время необходимого количества тепла за счет электрических нагревателей, питающихся частью выработанной в ГЭВГ электрической энергии, а в летнее время они отключаются, и на наружную поверхность емкости подается тепло из окружающей среды.

Устройство имеет следующий вид (см. чертеж).

Гидроэлектроводородный генератор (ГЭВГ) для преобразования энергии путем электролиза, содержащий емкость, заполненную водным раствором электролита, выполненную с возможностью вращения, внутренняя поверхность которой имеет вид усеченного конуса, наружная поверхность выполнена ребристой, установленную на вертикальном валу и связанную с приводом вращения, с возможностью подачи в основание нагретой до 90°С воды, одним электродом является корпус емкости, а второй электрод закреплен на неподвижной раме с возможностью вертикального перемещения так, чтобы постоянно находился в контакте с электролитом, а также каналы подачи воды и водного раствора электролита, отвода продуктов электролиза и емкость изолированы друг от друга и от окружающей среды с помощью воздушного затвора. Снаружи емкости с водным расвором электролита дополнительно установлен неподвижный чехол, внутри которого для создания между емкостью и чехлом необходимого количества тепла имеются электрические нагреватели, питающиеся частью выработанной гидроэлектроводородным генератором электрической энергией, а вертикальный вал емкости с водным раствором электролита соединен с валом гидротурбины через двухступенчатый цилиндрический редуктор с эвельвентным зацеплением (редуктор не показан), в котором передаточное число одной ступени передачи И 1=10 и второй ступени - И 2=11,2, позволяющим вращать емкость с водным раствором электролита более 20000 об/мин. Наружный неподвижный чехол 12 закреплен к раме 8.

Различные конструктивные решения данного устройства предполагают различные выполнения его теплообменника. Функции теплообменника в устройстве выполняет ребристая наружная поверхность 9 корпуса емкости 2, которая отбирает тепло, создаваемое электронагревателями 11 в пространстве между чехлом 12 и ребристой наружной поверхностью 9 емкости 2, а также подаваемая в основание емкости нагретая до 90°С вода. Внутренняя часть емкости выполнена таким образом, чтобы водный раствор электролита частично циркулировал и выполнял функцию внутреннего теплообменника, за счет конусной части. Конструктивно электроды 2 и 4 выполнены так, чтобы их можно было подключить к выпрямителю и тем самым водород и кислород получать при малых скоростях вращения.

Следует отметить, что емкость с водным раствором электролита, например в 1 м3 для стационарного варианта выполнения ГЭВГ, будет иметь массу до 1200-1400 кг, что может быть легко реализовано при соединении вала емкости ГЭВГ через двухступенчатый цилиндрический редуктор. Поэтому новизна ГЭВГ и заключается в использовании механической энергии вала вращающегося гидротурбины ГЭС.

Одна емкость ГЭВГ с объемом водного раствора электролита в количестве 1 м3 при достижении пороговой скорости вращения позволяет получать в одну секунду 3,5-4 м3 водорода, 2,2-2,5 МДж электроэнергии.

Количество водорода, электроэнергии и кислорода можно увеличить, одновременно используя несколько емкостей ГЭВГ.

ГЭВГ функционирует следующим образом.

В емкость 2 ГЭВГ, установленную на вертикальном валу 1, которая соединена с валом гидротурбины ГЭС (не показан), выполненную с возможностью вращения, через канал 5 подают заранее подготовленный водный раствор электролита необходимого объема, а расход водного раствора электролита в процессе работы восполняется нагретой до 90°С водой через канал 5. При этом количество водного раствора электролита перекрывает на 1/3 часть длины усеченного конуса 10, а конец вертикально перемещающегося электрода 4 и второй электрод 2 (корпус емкости) всегда находятся в контакте с водным раствором электролита.

ГЭВГ работает следующим образом.

Сначала разгоняют емкость 2 до достижения пороговой частоты вращения, при которой начинается выход водорода и кислорода, т.е. по достижении пороговой скорости вращения емкости, необходимой для разрушения гидратных оболочек. Электрическая энергия вырабатывается внутри емкости устройства за счет разделения отрицательных тяжелых и положительных легких частиц. При поддержке тока наружным источником величину пороговой скорости вращения емкости можно существенно уменьшить. Разложение воды на водород и кислород в устройстве восполняет дозированное поступление воды по каналу ввода 5 и удаление водорода и кислорода через каналы выхода 6 и 7.

В процессе работы ГЭВГ под действием центробежной силы в емкости 2, в которой катионы и анионы в виде гидратов, имеющих существенно разную собственную массу, разделяются. Тяжелые ионы с отрицательным зарядом собираются на внутренней поверхности емкости 2, образуя зону с повышенной концентрацией одноименных ионов, например анионов, то есть образуя зону с отрицательным пространственным электрическим зарядом, который индуцирует на внешней поверхности емкости адекватный заряд из электронов проводимости. Легкие же ионы сконцентрируются в области между указанным пространственным зарядом и электродом 4, образуя свой пространственный положительный заряд. По мере возрастания напряженности электрического поля между катионами и поверхностью катода, достаточного для создания электрического поля, способного разрушить гидратные оболочки легких ионов, они приблизятся к поверхности электрода 4 и разрядятся. Тяжелые ионы, прижатые центробежной силой к поверхности другого электрода 2, тоже отдадут свой заряд электроду, и между ними по короткозамкнутому проводнику или через потребитель электрической энергии потечет постоянный электрический ток. Ионы водного раствора электролита восстановятся, образуя водород и кислород, а промежуточные продукты электролиза вступят во вторичные реакции с доливаемой водой.

Восстановленный водород и кислород из емкости удаляются через каналы для отвода 6 и 7.

Производительность заявленного устройства по водороду, электроэнергии и кислороду достигается за счет создания заданного количества теплоты в замкнутом пространстве между наружной поверхностью вращающейся емкости и неподвижным чехлом 12 над емкостью 2. Замкнутость вышеуказанного пространства достигается за счет наличия воздушного затвора 3 между вращающейся емкостью 2 и неподвижным чехлом 12. В этом отношении ГЭВГ существенно отличается от известных преобразователей, так как процесс разложения воды на кислород и водород за счет восстановления их ионов сопровождается уменьшением энтальпии водного раствора электролита, в результате чего температура водного раствора электролита постоянно снижается, и, если постоянно не восполнять теплопотери, то водный раствор электролита замерзнет и процесс прекратится. Электрод 4 ГЭВГ закреплен на отдельной раме 8, и его можно переместить вертикально, чтобы нижний конец постоянно находился в контакте с водным раствором электролита. К раме закреплен неподвижный наружный чехол 12, который связан с вращающей емкостью через воздушный затвор 3, что позволяет отдельно собирать кислород и использовать получаемую электроэнергию на внешней нагрузке. Общий КПД предлагаемого устройства больше, чем КПД прототипа, за счет большего поглощения тепла из окружающей среды и в среднем составляет 0,92.

ГЭВГ можно использовать только в стационарном режиме.

Таким образом, разработано новое энергетическое устройство для получения в промышленных масштабах водорода, электроэнергии и кислорода, названное гидроэлектроводородным генератором (ГЭВГ), работающее от механической энергии гидротурбины в стационаре, с использованием даровой тепловой энергии из окружающей среды в летнее время и части вырабатываемой собственной электроэнергии в зимнее время, с большим КПД для преобразования механической и тепловой энергией в электрическую и химическую энергии.

Получение водорода, кислорода и электрической энергии с использованием ГЭВГ в новых гидроэлектроводородных станциях (ГЭВС) будет играть такую же роль в водородной энергетике, какую играло в свое время электричество, и будет способствовать развитию гидроэнергетики для всей цивилизации в мире.

Литература

1. Патент РФ №2174162, С25В 9/00, 1/02, F02M 21/02, 1998 г. (аналог).

2. Устройство для преобразования энергии. Батырмурзаев Ш.Д., Османов С.Г., Беламерзаев Н.М., Власов B.C. Заявка RU №2006145262/15. Дата подачи заявки 19.12.2006 (прототип).

Гидроэлектроводородный генератор (ГЭВГ) для преобразования энергии путем электролиза, содержащий емкость, заполненную водным раствором электролита, выполненную с возможностью вращения, внутренняя поверхность, которой имеет вид усеченного конуса, наружная поверхность выполнена ребристой, установленную на вертикальном валу и связанную с приводом вращения, с возможностью подачи в основание нагретой до 90°С воды, одним электродом является корпус емкости, а второй электрод закреплен на неподвижной раме с возможностью вертикального перемещения так, чтобы постоянно находился в контакте с электролитом, а также каналы подачи воды и водного раствора электролита, отвода продуктов электролиза и емкость изолированы друг от друга и от окружающей среды с помощью воздушного затвора, отличающийся тем, что снаружи емкости с водным раствором электролита дополнительно установлен неподвижный чехол, внутри которого для создания между емкостью и чехлом необходимого количества тепла имеются электрические нагреватели, питающиеся частью выработанной гидроэлектроводородным генератором электрической энергией, а вертикальный вал емкости с водным раствором электролита соединен с валом гидротурбины через двухступенчатый цилиндрический редуктор с эвольвентным зацеплением, в котором передаточное число одной ступени передачи И 1=10 и второй ступени - И 2=11,2, позволяющим вращать емкость с водным раствором электролита до 20000 об/мин.



 

Похожие патенты:

Изобретение относится к конструкции реактивных гидроколес. .

Изобретение относится к гидромашиностроению и может быть использовано в поворотно-лопастных гидротурбинах. .

Изобретение относится к ветро- и гидроэнергетике и может быть применено на приливных электростанциях, низконапорных речных гидроэлектростанциях, на волновых электростанциях, на ветроэлектростанциях с концентраторами ветровой энергии.

Изобретение относится к конструкциям установок для преобразования энергии течения воды в электрическую энергию. .

Изобретение относится к гидроэнергетике. .

Изобретение относится к конструкциям установок для преобразования энергии течения воды в электрическую энергию. .

Изобретение относится к конструкциям установок для преобразования энергии течения воды в электрическую энергию. .

Изобретение относится к гидроэнергетике и может быть использовано в гидротурбинных установках, в частности в гидравлических турбинах ортогонального типа с малыми напорами.

Изобретение относится к конструкциям установок для преобразования энергии течения воды воздушного потока в электрическую энергию. .

Изобретение относится к рабочим колесам для турбины Френсиса

Изобретение относится к гидромашиностороению, а именно к устройству поворотно-лопастных гидромашин

Изобретение относится к гидравлическим турбинам, работающим от энергии естественного потока воды с различными скоростями и мощностями, и может быть использовано в промышленной выработке электроэнергии без строительства плотин и деривации воды

Изобретение относится к области теплоэнергетики и может быть использовано для контактного нагрева воды паром при одновременном использовании кинетической энергии пара для вращения воды, передаваемой на силовой вал, передающий энергию на транспортирование нагретой воды, и, при необходимости, на привод электрогенератора, вырабатывающий электроэнергию

Изобретение относится к области гидротурбостроения и может быть использовано при разработке рабочих колес радиально-осевых гидротурбин

Изобретение относится к области гидротурбостроения и может быть использовано при разработке рабочих колес радиально-осевых гидротурбин

Изобретение относится к гидроэнергетике и может быть использовано для преобразования кинетической энергии потоков рек, каналов, сбрасываемой воды в природных и техногенных системах в механическую или электрическую энергию

Изобретение относится к турбинам или силовым установкам, вырабатывающим электричество с использованием потока жидкости, в частности воды, а более конкретно - к таким устройствам, в которых поток жидкости вращает большой ротор типа винта или рабочего колеса, имеющий внешний кольцевой обод, расположенный внутри большого кольцевого корпуса

Изобретение относится к способу и устройству для постепенного преобразования энергии морских волн в электроэнергию
Наверх