Устройство для контроля изменений во времени намагниченности объекта

Изобретение относится к измерительной технике, может быть использовано для контроля эксплуатационных изменений намагниченности различных объектов, содержащих элементы корпусных конструкций из ферромагнитных материалов, например судов со стальным корпусом. Заявлено устройство для контроля изменений во времени намагниченности объекта. Устройство включает феррозонды удлиненной формы, расположенные на элементе корпусной конструкции из ферромагнитного материала. Причем феррозонды состоят из сердечника из магнитомягкого материала, на который намотаны электрические обмотки, подключенные к измерительной аппаратуре. При этом сердечники феррозондов выполнены в виде скоб с наконечниками, выполненными из материала, магнитная проницаемость которого не менее магнитной проницаемости ферромагнитного материала элементов корпусной конструкции, размещенными в месте контакта концов сердечника феррозонда с элементом корпусной конструкции. Технический результат заключается в повышении точности контроля изменений во времени намагниченности объекта в условиях высокого уровня магнитных помех от размещенного на объекте оборудования. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано для контроля эксплуатационных изменений намагниченности различных объектов, содержащих элементы корпусных конструкций из ферромагнитных материалов, например судов со стальным корпусом.

В устройствах, предназначенных для контроля намагниченности объектов, широко используются магнитоизмерительные датчики. Известно устройство для определения параметров, характеризующих намагниченность подвижного объекта, содержащее трехкомпонентные магнитометрические датчики, расположенные в двух фиксированных относительно измеряемого объекта точках пространства, и измерительную аппаратуру, состоящую из шести усилительно-преобразовательных блоков, двух генераторов переменных напряжений, двух регулировочных устройств, двух немагнитных оснований, трех углоизмерительных устройств, устройства обработки информации, регистрирующего устройства и поворотного устройства (см. патент РФ №2257594 от 27.07.2005 г.) - аналог. Такое техническое решение позволяет контролировать изменения намагниченности лишь в тех точках, где размещены магнитометрические датчики.

Известен также феррозондовый магнитометр, использующий датчик, выполненный в форме буквы Е, повернутой на угол 90 градусов по часовой стрелке и располагающейся непосредственно на поверхности контролируемой ферромагнитной конструкции (см. патент США № US 6,456,069 В1 от 24.09.2002 г.) - аналог. Возбуждающая обмотка датчика намотана на среднюю ножку буквы E, измерительная обмотка намотана на верхнее основание буквы E. Существенным недостатком данного технического решения является значительное влияние обмотки возбуждения датчика на магнитное состояние измеряемой ферромагнитной конструкции, так как создаваемый обмоткой переменный магнитный поток проходит через измеряемую конструкцию и искажает условия формирования намагниченности на измеряемом участке.

Приведенные в аналогах технические решения могут обеспечить контроль изменений во времени намагниченности лишь на локальных участках поверхности контролируемой ферромагнитной конструкции и в случае необходимости контроля суммарной намагниченности объекта требуют использования недопустимо большого числа датчиков. Существенное снижение необходимого числа датчиков может быть достигнуто в случае применения значительно более протяженных магнитометрических датчиков, обеспечивающих в силу своей геометрии интегрирование обусловленного магнитным полем объекта сигнала.

Таким наиболее близким к заявляемому техническому решению является интегрирующий феррозондовый магнитометр, содержащий феррозонды удлиненной формы и измерительную аппаратуру, включающую задающий генератор переменного напряжения, усилитель сигнала задающего генератора, усилитель второй гармоники измеряемого сигнала, детектор, устройство регистрации и обработки измерительной информации (см. патент США № US 6,278,272 В1 от 21.08.2001 г.) - прототип.

Феррозонд содержит вытянутый кольцевидный сердечник из магнитомягкого аморфного материала, состоящий из двух параллельных прямолинейных и двух дугообразных участков. На сердечник намотаны две электрические обмотки, одна из которых - обмотка возбуждения - подключена к усилителю сигнала задающего генератора, вторая - измерительная обмотка - соединена с усилителем второй гармоники измеряемого сигнала. Использование в прототипе удлиненных феррозондов, каждый из которых заменяет несколько «точечных», позволяет в условиях больших градиентов магнитного поля, обусловленных аномалиями намагниченности отдельных участков корпусных конструкций, значительно уменьшить количество датчиков, необходимых для выделения полезного сигнала, связанного с изменениями намагниченности объекта.

Однако удлиненные феррозонды, входящие в состав известного устройства, осуществляют интегрирование по длине датчика не только сигнала, обусловленного изменениями намагниченности объекта, но и сигнала от магнитных помех размещенного на объекте оборудования. Поэтому известное устройство, в случае его применения на объекте с высоким насыщением электроэнергетическим оборудованием, например на судах, не всегда способно обеспечить высокую точность контроля изменений намагниченности во времени.

Задачей предлагаемого изобретения является повышение точности контроля изменений во времени намагниченности объекта в условиях высокого уровня магнитных помех от размещенного на объекте оборудования и больших градиентов магнитного поля, обусловленных аномалиями намагниченности отдельных участков корпусных конструкций.

Реализация поставленной задачи достигается тем, что в известном устройстве для контроля изменений во времени намагниченности объекта, включающем элементы корпусных конструкций объекта из ферромагнитного материала и расположенные над ними феррозонды удлиненной формы с сердечниками из магнитомягкого материала, на которые намотаны электрические обмотки, подключенные к измерительной аппаратуре, сердечники феррозондов выполнены в виде скоб и расположены на корпусной конструкции с непосредственным контактом обоих их концов с поверхностью корпусной конструкции. Причем сердечники феррозондов могут быть снабжены наконечниками, выполненными из материала, магнитная проницаемость которого не менее магнитной проницаемости ферромагнитного материала корпусной конструкции.

Выполнение сердечников, расположенных над элементами корпусных конструкций феррозондов удлиненной формы, в виде скоб и обеспечение непосредственного контакта обоих концов сердечника с поверхностью корпусной конструкции повышает уровень полезного сигнала, обусловленного изменениями намагниченности объекта, и одновременно уменьшает воздействие на датчик магнитных помех от расположенного на объекте оборудования.

Улучшение соотношения сигнал/помеха при выполнении контроля изменений намагниченности объекта с помощью предлагаемого устройства обусловлено уменьшением магнитного сопротивления цепи, по которой замыкается измеряемый феррозондом магнитный поток, вследствие исключения двух участков, представляющих собой воздушные зазоры между концами сердечника феррозонда и поверхностью корпусной конструкции. Уменьшение магнитного сопротивления цепи, по которой замыкается измеряемый магнитный поток, достигается также путем снабжения сердечника наконечниками из магнитомягкого материала, уменьшающими переходное магнитное сопротивление между сердечником феррозонда и корпусной конструкцией. Исключение из магнитной цепи двух воздушных зазоров и соответствующий выбор геометрических размеров и материалов сердечника феррозонда и наконечников обеспечивают возможность уравнивания сигналов от наводимых помехами магнитных потоков в сердечнике и в корпусной конструкции. Это позволяет минимизировать влияние магнитных помех, так как при формировании полезного сигнала указанные потоки действуют встречно.

Сущность изобретения поясняется чертежом, на котором схематично представлено предлагаемое устройство.

Устройство для контроля изменений во времени намагниченности объекта включает элемент корпусной конструкции 1 с расположенным над ним феррозондом удлиненной формы, состоящим из имеющего форму скобы сердечника из магнитомягкого материала 2, на который намотаны электрические обмотки 3, подключенные к измерительной аппаратуре 4. В месте контакта концов сердечника 2 феррозонда с элементом корпусной конструкции 1 размещены наконечники 5, выполненные из материала, магнитная проницаемость которого не менее магнитной проницаемости материала корпусной конструкции.

Работа устройства осуществляется следующим образом.

В процессе эксплуатации в корпусных конструкциях объекта под действием хаотично изменяющихся магнитных полей и механических напряжений возникают непредсказуемые изменения во времени намагниченности отдельных участков корпусных конструкций. Устройство контроля этих изменений намагниченности объекта с помощью расположенных над корпусными конструкциями феррозондов отслеживает только изменения во времени намагниченности корпусных конструкций и подает сигнал на измерительную аппаратуру. При этом влияние помех от расположенного внутри корпуса объекта оборудования становится меньше, а полезный сигнал - больше, что приводит к повышению соотношения сигнал/помеха и соответственно точности контроля изменений во времени намагниченности объекта.

Лабораторные испытания на действующем макете предлагаемого устройства показали, что его применение позволяет не менее чем в 1,5 раза повысить точность контроля изменений намагниченности объекта.

Устройство для контроля изменений во времени намагниченности объекта, включающее феррозонды удлиненной формы, расположенные на элементе корпусной конструкции из ферромагнитного материала, причем феррозонды состоят из сердечника из магнитомягкого материала, на который намотаны электрические обмотки, подключенные к измерительной аппаратуре, при этом сердечники феррозондов выполнены в виде скоб с наконечниками, выполненными из материала, магнитная проницаемость которого не менее магнитной проницаемости ферромагнитного материала элементов корпусной конструкции, размещенными в месте контакта концов сердечника феррозонда с элементом корпусной конструкции.



 

Похожие патенты:

Изобретение относится к измерению переменных магнитных полей и может найти применение при контроле их соответствия нормам безопасности воздействия на человека или технические средства.

Изобретение относится к области магнитных измерений и предназначено для использования в приборах измерения амплитуды напряженности магнитного поля, в т.ч. .

Изобретение относится к области измерения магнитной индукции с помощью трехкомпонентной меры магнитной индукции. .

Изобретение относится к феррозондовым навигационным магнитометрам и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля Земли и выдачи сигналов, пропорциональных измеренным компонентам в виде цифрового кода.

Изобретение относится к области магнитных измерений, в частности к измерениям компонент и полного вектора индукции магнитного поля Земли, а также к средствам калибровки магнитометров.

Изобретение относится к квантовым сверхпроводниковым магнитометрам на основе сверхпроводниковых квантовых интерференционных детекторов (СКВИДов) и может быть использовано для создания и практического применения различных магнитометрических приборов в таких областях, как биомедицина, промышленность, научное приборостроение.

Изобретение относится к магнитным измерениям на подвижных объектах, в частности к измерениям компонент и полного вектора индукции магнитного поля Земли и магнитному курсоуказанию.

Изобретение относится к феррозондовым навигационным магнитометрам и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля Земли и выдачи сигналов, пропорциональных измеренным компонентам в виде цифрового кода.

Изобретение относится к феррозондовым навигационным магнитометрам и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля Земли и выдачи сигналов, пропорциональных измеренным компонентам в виде цифрового кода.

Изобретение относится к магнитоизмерительной технике и навигационному приборостроению. .

Изобретение относится к физике магнетизма и предназначено для анализа ферромагнитного взаимодействия, в частности для определения наличия или отсутствия эффекта «вмороженности» магнитных силовых линий между доменами двух намагниченных ферромагнитных тороидов, установленных соосно и обращенных одинаковыми магнитными полюсами друг к другу

Изобретение относится к феррозондовым навигационным магнитометрам

Изобретение относится к устройствам измерения магнитной индукции переменного электромагнитного поля в диапазоне частот от единиц герц до 1 МГц

Изобретение относится к области магнитных измерений, в частности к измерениям компонент и полного вектора индукции магнитного поля Земли (МПЗ), а также к средствам калибровки магнитометров

Изобретение относится к измерению электрических и магнитных величин, а именно к устройствам и способам измерения напряженности магнитных полей
Изобретение относится к области радиоизмерений, радиофизики и радиотехники и может быть использовано для регистрации возмущений электромагнитного поля

Изобретение относится к измерительной технике и может быть использовано для магнитных измерений, в дефектоскопии и других областях науки и техники

Изобретение относится к феррозондовым навигационным магнитометрам и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля Земли и выдачи сигналов, пропорциональных измеренным компонентам, в виде цифрового кода

Изобретение относится к феррозондовым навигационным магнитометрам и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля Земли и выдачи сигналов, пропорциональных измеренным компонентам, в виде цифрового кода

Изобретение относится к устройствам, использующим магнитометрию на железных дорогах, в частности измерению напряженности магнитного поля в рельсовых стыках
Наверх