Способ определения места повреждения линий электропередачи и связи и устройство для его осуществления

Изобретение относится к радиолокационным технологиям для дистанционного определения места повреждения высоковольтных линий (ВЛ), характеризующихся большим количеством неоднородностей. Сущность: способ заключается в посылке в линию зондирующих импульсов напряжения с время-частотной модуляцией от генератора, приеме отраженных импульсов. При этом фиксируют массив демодулированных отраженных сигналов, полученных с неповрежденной линии, в виде электронного образа линии. Проводят автокорреляционную обработку, спектральный анализ и определяют частоты, соответствующие импульсам, отраженным от естественных неоднородностей. Записывают значения частот и соответствующих им расстояний до естественных неоднородностей в виде реперных точек. Для обнаружения повреждения отраженные демодулированные импульсы от естественных неоднородностей и неоднородности, возникшей при повреждении линии, вычитают из зафиксированных в электронном образе линии. Вывод о повреждении линии делают при наличии разностных сигналов. Подвергают разностный сигнал автокорреляционной обработке и спектральному анализу. Определяют частоту FX, соответствующую координате повреждения, и расстояние до места повреждения по частоте FX и реперным точкам. Технический результат: высокая точность и однозначность определения места повреждения в разветвленных линиях и в автоматизации процесса измерений. 2 н.з.п. ф-лы, 12 ил.

 

Изобретение относится к радиолокационным технологиям контроля повреждений линий электропередачи и может быть использовано, в том числе, при создании устройств для дистанционного определения места повреждения высоковольтных линий (ВЛ), преимущественно трехфазных, характеризующихся большим количеством неоднородностей.

Известен способ определения мест повреждений линий электропередачи и связи и устройство, предназначенное для реализации этого способа (Патент RU 2269789, кл. G01R 31/11, публ. 2006 г.) /1/. Известный способ заключается в посылке в линию зондирующих импульсов от генератора при согласовании выходного сопротивления последнего с волновым сопротивлением линии с требуемой точностью согласования, приема отраженных импульсов, определении места повреждения по временной задержке отраженного импульса относительно зондирующего, при этом зондирующие импульсы напряжения подвергают время-частотной модуляции, а отраженные импульсы - соответствующей демодуляции, фильтрации и спектральному анализу, причем информацию о временной задержке отраженных импульсов относительно зондирующих и местах повреждений определяют по значениям получаемых амплитудно-частотных спектров.

Недостатком данного способа является то, что он обеспечивает точность измерения расстояния до места повреждения для однородных линий, согласованных с генератором и на конце, и с постоянной скоростью распространения сигналов по линии. Большинство воздушных ЛЭП при наличии значительного количества отводов, периодическому налипанию снега на провода и их обледенению на различных участках не удовлетворяют условиям однородности и согласованности на конце для зондирующих сигналов. Неоднородности приводят к появлению в спектре демодулированного сигнала, который состоит из большого количества отраженных и переотраженных от неоднородностей импульсов, множества спектральных составляющих, что не позволяет выделить спектральную составляющую от повреждения и определить расстояние до него. Также для расчета расстояния по времени задержки необходимо точно знать фазовую скорость распространения сигналов по линии на момент измерения.

l=τЗVФ,

где расстояние l рассчитывается в метрах, время задержки τЗ - в секундах, а скорость VФ - в м/с.

При изменении погодных условий изменяется фазовая скорость на неизвестную величину ΔVФ, тогда

l=τЗ(VФ±ΔVФ)=τЗVФ±τЗVФ,

т.е. погрешность определения расстояния из-за неопределенности VФ

l=±τЗΔVФ

увеличивается с увеличением τЗ; то есть чем больше расстояние до места повреждения, тем больше абсолютная погрешность измерения.

Задачей изобретения является повышение точности измерения расстояния до места повреждения в любых линиях электропередачи, как однородных, так и неоднородных, при произвольно изменяющейся фазовой скорости на различных участках линии.

Указанная задача решается способом определения места повреждения линии электропередачи и связи, заключающемся в посылке в линию зондирующих импульсов напряжения с время-частотной модуляцией от генератора, приеме отраженных импульсов, определении места повреждения по временной задержке отраженного импульса относительно зондирующего, при этом отраженные импульсы подвергают демодуляции, фильтрации, преобразованию в цифровую форму, причем преобразованные отраженные импульсы от естественных неоднородностей исправной линии сохраняют в памяти, подвергают автокорреляционной обработке, спектральному анализу, определяют частоты, соответствующие импульсам, отраженным от естественных неоднородностей, расстояние до которых известно с высокой точностью, и сохраняют величины частоты и расстояний в памяти в виде реперных точек, а преобразованные отраженные импульсы от естественных неоднородностей и неоднородности, возникшей при повреждении линии, вычитают из хранящихся в памяти, разностный сигнал подвергают автокорреляционной обработке и спектральному анализу, причем информацию о расстоянии получают по максимальному значению амплитудно-частотного спектра автокорреляционной функции разностного сигнала и реперным точкам.

Поскольку ошибка определения дальности при определении места повреждения связана непосредственно с ошибкой измерения времени запаздывания (частоты) и фазовой скорости распространения сигнала, то можно характеризовать повышение точности измерения дальности уменьшением ошибок измерения (частоты) времени запаздывания и уменьшением влияния скорости распространения.

На фиг.1, а слева от начала координат автокорреляционной функции изображена зондируемая линия, к которой на расстоянии L1 от начала длиной LK подключен один отвод. Справа - совмещенный спектр автокорреляционной функции поврежденной и неповрежденной линий: спектральные составляющие отраженного сигнала в линии без повреждений - сплошные линии; составляющие, появляющиеся в результате повреждения, - пунктирные линии. Наклонными прямыми, у которых тангенс угла положительный, показан путь прохождения сигнала от генератора, у которых отрицательный - к генератору. Для ЛЧМ сигналов частота связана линейной зависимостью с временем. Поэтому каждому моменту прихода отраженного сигнала соответствует своя частота:

F1 - частота, соответствующая отражению от точки подключения отвода L1 и определяемая задержкой сигнала при прохождении пути 2L1;

F1K - частота, соответствующая отражению от конца отвода LK и определяемая задержкой сигнала при прохождении пути 2(L1+LK), где LK - расстояние от точки подключения отвода к питающей линии до его конца;

(F1K+ΔF) - частота, соответствующая первому переотражению в отводе и определяемая задержкой сигнала при прохождении пути 2(L1+2LK);

(F1K+2ΔF) - частота, соответствующая двойному переотражению в отводе и определяемая задержкой сигнала при прохождении пути 2(L1+2LK);

FЛK - частота, соответствующая отражению от конца отвода FЛK питающей линии и определяемая задержкой сигнала при прохождении пути 2LK.

При появлении повреждения на дальности LX (обрыв или короткое замыкание в двухпроводной линии) в спектре демодулированного отраженного сигнала появляются новые спектральные составляющие, показанные пунктиром, причем все составляющие от неоднородностей, расположенных ближе от места повреждения LX, остаются неизменными, а составляющие от неоднородностей, расположенных в месте повреждения и дальше него, изменяются. Поэтому при вычитании отраженных сигналов, полученных до повреждения и после него, в спектре разностного сигнала появляется четкая граница, соответствующая частоте FX, ниже которой составляющих нет (фиг.1, б).

Ошибка в определении частоты FX по спектру демодулированного отраженного сигнала, соответствующей повреждению в линии с неоднородностями, в значительной степени зависит от переотраженных сигналов. Так, например, если частота FX совпадает с частотой, вызванной переотраженным от неоднородностей сигналом, обнаружить ее и определить величину в спектре сложного полигармонического сигнала практически невозможно, а если и возможно, то с ошибкой, вызванной наложением спектров от демодулированных отраженных от неоднородностей и повреждения сигналов (фиг.1, а).

При вычитании сигналов, отраженных при повреждении линии, из сигналов, отраженных при исправной линии и хранящихся в памяти, все частоты в спектре автокорреляционной функции разностного сигнала F<FX исчезают, и проявляется ярко выраженная спектральная составляющая от повреждения, так как все отраженные импульсы на входе приемника, время задержки которых меньше времени задержки отраженного импульса от повреждения, вычитаются (фиг.1, б).

Известное устройство /1/ для реализации известного способа содержит соединенные между собой генератор зондирующих импульсов, вычислительный блок, приемник и блок индикации. При этом генератор зондирующих импульсов имеет блок памяти, цифро-аналоговый преобразователь и усилитель мощности, а приемник содержит смеситель, фильтр нижних частот, аналогово-цифровой преобразователь.

Недостатком известного устройства является влияние выходного сопротивления усилителя мощности на погрешность измерения расстояния до места повреждения и на максимальную дальность, на которой обеспечивается требуемая точность, что накладывает жесткие ограничения на характеристики усилителя и блока управления сопротивлением.

Рассмотрим условие согласования генератора с линией для отраженных импульсов. Известно, что коэффициент отражения Р определяется формулой (1) (А.А.Харкевич. «Основы радиотехники». - М.: Связьиздат., 1962) /2/

где Zi=ZВЫХ+RC - выходное сопротивлении источника (генератора), зондирующего линию,

ZВЫХ - выходное сопротивление усилителя мощности,

RC - согласующий резистор блока управляемого сопротивления,

W - волновое сопротивление зондируемой линии.

Из формулы (1) следует, что для хорошего согласования генератора с линией должно выполнятся условие Zi≈W≈Zi+RC. Чтобы отраженный от повреждения линии сигнал не попадал на оба входа приемника, выходное сопротивление усилителя мощности должно быть равно нулю (в противном случае полезный сигнал на выходе смесителя уменьшится и ухудшится соотношение сигнал/помеха). Тогда при RC=W напряжение падающей волны UПВ в два раза меньше напряжения на выходе усилителя мощности ZВЫХ или усилитель должен развивать в два раза большую мощность, так как половина мощности теряется в согласующем резисторе. Кроме того, переотражение импульсов при условии согласования генератора с линией всегда проявляется в неоднородных линиях. Любая реальная линия имеет случайные неоднородности, обусловленные технологией изготовления и монтажа (особенно это относится к воздушным ВЛ, имеющим на своем протяжении многочисленные отводы).

На каждой неоднородности будут происходить отражения, которые, отразившись, в свою очередь, от предшествующих неоднородностей, образуют затухающий "хвост", следующий за основным возмущением. Этот специфический вид искажений носит название попутного потока, который может сильно вредить на сколько-нибудь длинных ЛЭП (А.А.Харкевич. «Основы радиотехники», М.: Связьиздат., 1962) /2/.

Указанные недостатки в заявленном устройстве отсутствуют, т.к. не требуется полного согласования усилителя мощности с линией. Благодаря введению в устройство направленного ответвителя устраняется влияние выходного сопротивления усилителя мощности на отраженный сигнал, приходящий с ЛЭП. Так как опорный сигнал снимается с выхода ЦАП, а не с выхода усилителя мощности, как в прототипе, обеспечивается высокая развязка между входами приемника. Введение в устройство коммутатора позволяет оперативно производить измерение расстояний до места повреждения на любых ВЛ, и при соответствующем ПО вычислитель определяет все виды повреждений, например замыкание любого провода на землю, обрыв любого провода, межпроводные замыкания, пробой изолятора, степень обледенения проводов и др.

Таким образом, новый технический результат, который может быть достигнут при реализации заявленного изобретения, заключается в достижении высокой степени точности и однозначности определения места повреждения высоковольтных трехфазных разветвленных линий, характеризующихся большим количеством неоднородностей, и в автоматизации процесса измерений.

Заявленный способ иллюстрируется примером его реализации в работе нового устройства, которое содержит генератор зондирующих импульсов 1, состоящий из блока памяти 2, цифрового преобразователя (ЦАП) 3 и усилителя мощности 4, направленный ответвитель 5, коммутатор 6, приемник 7, вычислительный блок 8 (например, микроЭВМ), блок передачи информации 9 (фиг.2).

Первый выход генератора 1, которым является выход усилителя мощности 4, соединен с входом направленного ответвителя (НО) 5, вход/выход НО 5 соединен с входом/выходом коммутатора 6, выход НО соединен с первым входом приемника 7, второй выход генератора, являющийся выходом ЦАП, соединен со вторым входом приемника 7, вход коммутатора 6 связан с вторым выходом вычислительного блока 8, n выходов коммутатора связаны с n проводами ВЛ, вычислительный блок 8 входом связан с выходом приемника 7, первым выходом - с входом генератора, который является входом блока памяти, а третьим выходом - с входом блока передачи информации 9.

Приемник 7 (фиг.3) содержит смеситель 10, фильтр нижних частот (ФНЧ) 11 и аналогово-цифровой преобразователь 12. Первый и второй входы смесителя 10 являются соответственно первым и вторым входом приемника, а выход преобразователя 12 - выходом приемника 7.

Коммутатор 6 (фиг.4) содержит в общем случае трансформатор, входная обмотка которого является входом/выходом, соединенным с входом/выходом НО 5, а выходная обмотка содержит К выводов, соединенных с входами/выходами блока ключей 14, соответствующие вых/вх блока ключей соединены с соответствующими проводами ВЛ. Управляющие входы ключей соединены с соответствующими выходами блока управления ключами 15, вход которого связан с выходом 2 вычислительного блока 8.

Вычислительный блок (фиг.5) в общем случае может представлять собой микроЭВМ, содержащую шину адресов данных, управления 16, модуль процессора 17, устройство управления клавиатурой 18, модуль памяти 19.

Рассмотрим работу устройства для определения места повреждения фазных проводов 3-фазной высоковольтной линии с N отводами к потребителям при зондировании ВЛ ЛЧМ импульсами с прямоугольной огибающей.

Вначале производят калибровку устройства. Для этого на первом цикле работы в модуль памяти вычислительного блока 8 записывают шесть массивов отраженных сигналов, полученных с неповрежденной ВЛ, так называемых электронных образов (паспортов), при шести видах подключения устройства к фазам, соответствующие подключения соответствуют при 3 фазах А, В, С возбуждению волны в ВЛ:

- фаза А - земля,

- фаза В - земля,

- фаза С - земля,

- фаза А - фаза В,

- фаза В - фаза С,

- фаза А - фаза С.

Расстояние до места подключения к ВЛ отводов и потребителей, от которых отражается сигнал как от естественных неоднородностей в канале распространения, является известным, то есть заданным.

Поэтому на втором цикле после соответствующей цифровой обработки (фильтрации, корреляционной и др.) и спектрального анализа шести паспортов UA-1, UB-1, UC-1, UA-B, UB-C, UA-C составляют таблицу реперных точек (фиг.6), в которой каждой известной неоднородности Li приводится соответствующая ей частота Fi.

На третьем цикле со всех подключений отраженные демодулированные сигналы вычитаются в вычислительном блоке 8 из соответствующих паспортов. При отсутствии повреждений фазных проводов ВЛ шесть разностных сигналов равны нулю, при этом все паспорта обновляются. Появление любого повреждения (например, короткое замыкания любой фазы на землю, обрыв любого провода, короткого замыкания 2 фаз и др.) приводит на различных видах возбуждения к появлению разностных сигналов. Разностные цифровые сигналы в модуле процессора 17 подвергаются обработке, корреляционному и спектральному анализу. При этом используется программное обеспечение, хранящееся в модуле памяти 19. В результате вычислительных процедур в модуле 17 получают для шести подключений шесть амплитудно-частотных спектров автокорреляционных функций разностного сигнала (фиг.7, 8).

По максимальному значению амплитудно-частотного спектра автокорреляционной функции разностного сигнала определяется частота FX, соответствующая координате повреждения, по которой с учетом данных таблицы 1 (см. фиг.6) рассчитывается расстояние до места повреждения по формуле (2)

где FX - частота в Гц, соответствующая координате повреждения, определяемая по максимальному значению амплитудно-частотного спектра автокорреляционной функции разностного сигнала,

Fn, Fn-1 - частоты в Гц реперных точек, ближайшие к FX,

Ln, Ln-1 - расстояние до реперных точек в метрах,

- коэффициент, учитывающий изменение фазовой скорости при изменении начальных условий от момента записи реперных точек до момента возникновения повреждения,

- частота в Гц, полученная при анализе спектра автокорреляционной функции электронного образа линии на момент возникновения повреждения.

В результате анализа спектрограммы разностного сигнала в вычислительном блоке принимается решение о наличии или отсутствии повреждений в ЛЭП. Если повреждение обнаружено, то определяется тип повреждения и рассчитывается по формуле (2) расстояние до него. На фиг.9, 10, 11 приведены примеры спектров автокорреляционных функций разностного сигнала, полученные с реальной ВЛ, при этом на фиг.9 - при обрыве трех фаз на дальности 17,67 км, подключение Фаза-Фаза; на фиг.10 - при обрыве трех фаз на дальности 17,67 км, подключение Фаза-Земля, на фиг.11 - при отсутствии повреждений; фиг.12 - спектр автокорреляционной функции паспортного сигнала.

Данные спектров позволяют определить типы повреждения фаз посредством модуля 17 в результате сравнительного анализа спектров автокорреляционных функций разностного сигнала на шести типах подключений.

Например, при повреждении фазы А на всех видах подключения, кроме подключения фаза В-фаза С, разностный сигнал не равен нулю, а на подключении фаза В-фаза С он равен нулю, так как при подключении фаза В-фаза С по проводникам В и С протекают противофазные токи и поэтому электромагнитная связь с проводом А отсутствует, а значит, и отсутствует влияние провода А на сигнал, распространяющийся по проводам В и С. Поэтому повреждения провода не изменяют отраженные сигналы для противофазного возбуждения проводов В и С.

При повреждении высоковольтной линии в виде короткого замыкания фаза В-фаза С разностный сигнал будет отсутствовать при зондировании на подключении фаза А-Земля, так как электромагнитная волна, распространяющаяся по проводу А, наводит синфазные токи (напряжение) на проводах В и С. Поэтому при коротком замыкании соединяются эквипотенциальные точки проводов В и С, что не изменяет условий распространения синфазного сигнала, и поэтому не обнаруживается повреждение (разностный сигнал) на подключении фаза А-Земля.

Можно показать, что любые типы повреждения могут быть классифицированы при анализе отраженных сигналов, полученных при шести видах подключения устройства к проводам трехфазной линии электропередачи. В случае, если в вычислителе в соответствии с программой обнаруживается повреждение, то автоматически определяется расстояние до него, определяется тип повреждения, и информация передается на пульт диспетчера через блок передачи данных.

Кроме того, появление любого повреждения линии, в том числе обрыв любого провода, приводит появлению разностных сигналов, что автоматически, без участия оператора, фиксируется во времени. Знание времени повреждения может быть использовано соответствующими службами, отвечающими за безопасность линий, включая их хищение.

В частном случае применения заявленное изобретение может быть применимо для обслуживания неоднородных двухфазных линий электропередач.

1. Способ определения места повреждения линий электропередачи и связи, в котором в линию посылают импульсы напряжения с их время-частотной модуляцией, принимают отраженные импульсы с их последующей демодуляцией, фильтрацией и спектральным анализом, при обнаружении повреждения линии рассчитывают расстояние до места повреждения, отличающийся тем, что фиксируют массив демодулированных отраженных сигналов, полученных с неповрежденной линии в виде электронного образа линии, производят автокорреляционную обработку, спектральный анализ и определяют частоты, соответствующие импульсам, отраженным от естественных неоднородностей, записывают значения частот и соответствующих им расстояний до естественных неоднородностей в виде реперных точек, а для обнаружения повреждения отраженные демодулированные импульсы от естественных неоднородностей и неоднородности, возникшей при повреждении линии, вычитают из зафиксированных в электронном образе линий, вывод о повреждении линии делают при наличии разностных сигналов, подвергают разностный сигнал автокорреляционной обработке и спектральному анализу, определяют частоту FX, соответствующую координате повреждения, а расстояние до места повреждения рассчитывают по зависимости:
,
где FX - частота, соответствующая координате повреждения, определяемая по максимальному значению амплитудно-частотного спектра автокорреляционной функции разностного сигнала,
Fn, Fn-1 - частоты реперных точек, ближайшие к FX, Гц;
Ln, Ln-1 - расстояние до реперных точек, м;
- коэффициент, учитывающий изменение фазовой скорости при изменении начальных условий от момента записи реперных точек до момента возникновения повреждения;
- частота, полученная при анализе спектра автокорреляционной функции электронного образа линии на момент возникновения повреждения, Гц.

2. Устройство для определения места повреждения линий электропередачи и связи, содержащее генератор зондирующих импульсов, вычислительный блок, первый выход которого соединен со входом генератора, приемник, имеющий два входа и вторым входом связанный с вторым выходом генератора, а выходом - со входом вычислительного блока, при этом генератор зондирующих импульсов имеет блок памяти, цифроаналоговый преобразователь и усилитель мощности, вход блока памяти является входом генератора, выход усилителя мощности является первым выходом генератора, отличающееся тем, что устройство дополнительно содержит коммутатор, направленный ответвитель и блок передачи информации, при этом первый выход генератора соединен с входом направленного ответвителя, второй выход генератора, является выходом цифроаналогового преобразователя, соединенным со вторым входом приемника, вход/выход ответвителя соединен с входом/выходом коммутатора, а выход соединен с первым входом приемника, вход коммутатора связан со вторым выходом вычислительного блока, вычислительный блок третьим выходом соединен с входом блока передачи информации, n выходов коммутатора связаны с n проводами линии электропередачи.



 

Похожие патенты:

Изобретение относится к электроизмерительной технике и предназначено для определения мест повреждения (ОМП) в сетях электропередачи и связи. .

Изобретение относится к диагностике линий электропередач и предназначено для измерения расстояния до места повреждения, а также выделения поврежденного ответвления в разветвленной электрической сети.

Изобретение относится к электроэнергетике и может быть использовано при создании приборов для определения места повреждений линий электропередачи и связи. .

Изобретение относится к электроизмерительной технике и служит для определения повреждения (ОМП) в сетях электропередачи и связи. .

Изобретение относится к электротехнике и направлено на повышение помехоустойчивости и уменьшение влияния параметров сети на работу устройства. .

Изобретение относится к технике для обнаружения повреждений в линиях электропередач и предназначено для измерения расстояния до места повреждения, а также выделения поврежденного ответвления в разветвленной электрической сети.

Изобретение относится к электроизмерительной технике и средствам диагностирования и может быть применено для контроля дефектов изоляционных элементов высоковольтных линий электропередачи, а также определения места расположения дефектного изолятора на линии.

Изобретение относится к электротехнике и может быть использовано для поиска элемента с пониженным сопротивлением изоляции в разветвленной электрической сети постоянного оперативного тока электростанций и подстанций.

Изобретение относится к электротехнике, а именно к системной автоматике и релейной защите, и предназначено для реализации в устройствах определения места повреждения линий электропередачи (ЛЭП), в устройствах контроля погасания дуги ЛЭП, измерительных органах дистанционной защиты

Изобретение относится к электроэнергетике и может быть использовано при создании приборов для определения места повреждений линий электропередачи и связи

Изобретение относится к электроизмерительной технике, и может быть использовано для генерирования гармонических сигналов в составе измерительного комплекса для реализации индукционного метода поиска и диагностики подземных коммуникаций

Изобретение относится к электротехнике, в частности может быть применено для построения автоматических локационных показателей места повреждения ЛЭП. Технический результат: повышение точности. Сущность: излучают в линию зондирующий электрический импульс, принимают импульс, отраженный от места повреждения линии. Повторяют процесс излучения и приема электрических импульсов, причем излучение импульсов, начиная со второго, осуществляют в момент приема импульсов, отраженных от места повреждения линии. Расстояние до повреждения оценивают по частоте повторения принимаемых импульсов. 1 ил.

Изобретение относится к электроэнергетике и может быть использовано при создании приборов для определения места повреждений линий электропередачи и связи. Технический результат: обеспечение возможности обнружения слабых дефектов, расположенных вблизи основного дефекта. Сущность изобретения: излучают в линию гармонические колебания различных частот последовательно во времени. Принимают отраженные сигналы. Определяют по принятым отраженным сигналам коэффициенты отражения Г(fi). Умножают коэффициенты отражения на M значений e j 4 π ⋅ f n x m V ф , где xm=xmin+m·Δx, Δx - шаг (дискрет значений), xmin - нижняя граница области возможного положения дефекта. Запоминают полученные M значений. Определяют значения мощностей отраженных сигналов дважды по формулам: | U m 1 | 2 = | ∑ i = 1 N A n Г ( f i ) e j 4 π f i x m V ф | 2 и | U m 2 | 2 = | ∑ i = 1 N 1 A n Г ( f i ) e j 4 π f i x m V ф − ∑ i = N 1 N A n Г ( f i ) e j 4 π f i x m V ф | 2 , где 1<N1<N. Далее определяют значения мощности отраженных сигналов Um как разность первого и второго значений мощностей, исключая отрицательные значения: | U m | 2 = { | U m 1 | 2 − | U m 2 | 2     | U m | 2 > 0 0                          | U m | 2 ≤ 0 , и по максимальному значению определяют место повреждения. 5 ил.

Изобретение относится к контрольно-измерительной технике, в частности к способам контроля качества электрических контактов. Способ может быть использован для проведения диагностики и оценки качества электрических контактов в электрических цепях. Сущность: воздействуют на электрический контакт тестовым видеоимпульсным сигналом x(t). Регистрируют тестовый видеоимпульсный сигнал x(t). Принимают от электрического контакта сигнал-отклик u1(t) на тестовый видеоимпульсный сигнал. Повторно воздействуют тестовым видеоимпульсным сигналом с постоянным смещением. Регистрируют тестовый видеоимпульсный сигнал с допустимой нестабильностью формы [x(t)+Δx(t)] при повторном воздействии. Принимают от электрического контакта сигнал-отклик u2(t) на повторное воздействие тестовым видеоимпульсным сигналом. Вычисляют характеристику нелинейности ε*(t). Сравнивают полученное значение ε*(t) со значением ε*(t), измеренным для заведомо качественного электрического контакта. По результату сравнения определяют качество контакта. Технический результат: уменьшение влияния нестабильности параметров тестового сигнала на результат вычисления характеристики нелинейности электрического контакта. 4 ил.

Изобретение относится к электротехнике и может быть использовано для определения мест повреждения на кабельных линиях электропередачи и связи. Сущность: устройство содержит импульсный измеритель, радиотелефон, источник радиоактивного излучения, который установлен в центре свинцового контейнера в расположенном по его оси симметрии вертикальном канале. В нижней части свинцового контейнера установлено механическое затворное устройство, состоящее из свинцовой крышки, по центру которой выполнен вертикальный узконаправленный выходной канал, расположенный на одной оси с вертикальным каналом свинцового контейнера, и установленного внутри свинцовой крышки свинцового затвора с вертикальным проходным каналом, смещенным относительно оси симметрии свинцового контейнера влево, прижимаемого к нижней части свинцового контейнера прижимными пружинами с шариками и имеющего возможность плавно перемещаться вдоль нее до полного совмещения вертикального проходного канала свинцового затвора с вертикальным каналом свинцового контейнера и вертикальным узконаправленным выходным каналом свинцовой крышки по оси симметрии свинцового контейнера. Свинцовый затвор торцевыми частями упруго связан со свинцовой крышкой распорными пружинами и своей левой стороной соединен посредством гибкого троса, находящегося в стальной оболочке, с кнопкой дистанционного управления. Технический результат: снижение радиационного воздействия радиоактивного излучения на оператора, перемещающего источник радиоактивного излучения, повышение точности определения места повреждения кабеля путем снижения рассеивания γ-излучения. 2 ил.
Наверх