Способ получения коллоидных растворов оксида цинка в неполярных растворителях

Изобретение относится к нанотехнологии, к синтезу коллоидных растворов люминесцентных полупроводниковых материалов, применяемых для нанесения полупроводниковых покрытий и в качестве люминесцентных маркеров. Осуществляют нагрев в инертной атмосфере исходной реакционной смеси, содержащей олеиламин, олеиновую кислоту и неорганический цинксодержащий прекурсор, в качестве которого используют нитрат цинка, до 80-100°С с изотермической выдержкой в течение 15-30 минут для растворения нитрата цинка и последующий нагрев до 200-250°С с изотермической выдержкой в течение 1-4 часов. К полученному раствору добавляют полярный растворитель и отделяют скоагулировавшие наночастицы центрифугированием. Полученный осадок растворяют в неполярном растворителе. Причем после растворения нитрата цинка в реакционную смесь добавляют дифениловый эфир, а в исходную реакционную смесь дополнительно добавляют гексадекан. Обеспечивается уменьшение стоимости процесса, упрощение производства. 2 з.п. ф-лы.

 

Изобретение относится к области нанотехнологий, к синтезу коллоидных растворов люминесцентных полупроводниковых материалов, применяемых для нанесения полупроводниковых покрытий и в качестве люминесцентных маркеров.

Известен способ синтеза нанокристаллов диоксида церия, способных к образованию коллоидных растворов (Taekyung Yu, Jin Joo, Yong II Park, Taeghwan Hyeon. Large-Scale Nonhydrolytic Sol-Gel Synthesis of Uniform-Sized Ceria Nanocrystals with Spherical, Wire, and Tadpole Shapes. // Angew. Chem. Int. Ed. 2005, V.44, P.7411-7414), который включает в себя термическую обработку смеси нитрата церия, олеиламина, олеиновой кислоты, триоктиламина при температуре 320°С в инертной атмосфере, выделение и очистку полученных частиц CeO2 методом замены растворителя и редиспергирование полученных частиц в неполярном растворителе. Недостатком известного метода является то, что он использован только для получения диоксида церия, который характеризуется отсутствием целого ряда функциональных свойств (фотолюминесценция, фотокатализ) по сравнению с оксидом цинка.

Известен способ синтеза квантовых точек оксида цинка, способных к образованию коллоидных растворов (Chang G. Kim, Kiwhan Sung, Taek-Mo Chung, Duk Y. Jung and Yunsoo Kim. Monodispersed ZnO nanoparticles from a single molecular precursor. // CHEM. COMMUN., 2003, P.2068-2069), который включает в себя термическую обработку раствора [EtZnOiPr] в расплаве триоктилфосфидоксида при температуре 160°С в инертной атмосфере в течение 5 часов, выделение и очистку полученных частиц ZnO методом замены растворителя и редиспергирование полученных частиц в неполярном растворителе. Недостатком известного метода является очень высокая стоимость исходных реагентов, которая приводит к крайне высокой стоимости получаемых материалов, что затрудняет использование данного метода в промышленности.

Известен метод синтеза гексагональных частиц оксида цинка в результате термолиза олеата цинка ([Sang-Hyun Choi, Eung-Gyu Kim, Jongnam Park, Kwangjin An, Nohyun Lee, Sung Chul Kim, and Taeghwan Hyeon. Large-Scale Synthesis of Hexagonal Pyramid-Shaped ZnO Nanocrystals from Thermolysis of Zn-Oleate Complex. // J. Phys. Chem. B., 2005, Vol.109, No.31, P.14792-14794]), который выбран в качестве прототипа. Данный способ синтеза включает в себя синтез олеатного комплекса цинка из хлорида цинка, затем смешивание полученного олеата цинка, олеиламина и олеиновой кислоты, термическую обработку смеси при температуре 300°С в инертной атмосфере, выделение и очистку полученных частиц ZnO методом замены растворителя и редиспергирование полученных частиц в неполярном растворителе. Недостатком известного метода является сложность его осуществления вследствие многостадийности; кроме того, размер частиц ZnO, получаемых в результате синтеза, составляет 30-50 нм, что исключает возможность проявления квантоворазмерных эффектов и затрудняет использование данных частиц в виде коллоидных растворов.

Изобретение направлено на изыскание способа получения коллоидных растворов наночастиц оксида цинка с характерным размером частиц 4-10 нм в неполярных растворителях, характеризующийся пониженной себестоимостью получаемого продукта за счет использования неорганического прекурсора цинка (нитрата цинка).

Поставленная задача решается тем, что способ получения коллоидных растворов оксида цинка в неполярных растворителях, включает нагрев реакционной смеси из олеиламина, олеиновой кислоты и неорганического цинксодержащего прекурсора в инертной атмосфере, изотермическую выдержку, добавление полярного растворителя, отделение скоагулировавших наночастиц центрифугированием, редиспергирование осадка в неполярном растворителе, но в отличие от прототипа в качестве цинксодержащего прекурсора используют нитрат цинка с осуществлением нагрева реакционной смеси до 80-100°С в течение 15-30 минут и последующем нагревом при температуре 200-250°С в течение 1-4 часов. В исходную реакционную смесь дополнительно добавляют дифениловый эфир и гексадекан.

Для синтеза коллоидных растворов оксида цинка используют следующие исходные реагенты: цинка нитрат гексагидрат (Zn(NO3)2*6H2O, ч.д.а., Aldrich), олеиламин (C18H37N, тех., Fluka), олеиновая кислота (CH3(CH2)7CH=CH(CH2)7COOH, ч.д.а, Fluka), гексадекан (C16H34, ч., Химмед), дифениловый эфир (C12H10O, ч.д.а., Fluka). В ходе синтеза для очистки и формирования коллоидных растворов используют также следующие растворители: ацетон (C3H6O, ч., Химмед), гептан (C7H16, эталонный, Экрос). Синтез проводят в трехгорлой колбе в инертной атмосфере (аргон, ч.) с использованием обратного водяного холодильника для предотвращения испарения легкокипящих компонентов реакции. Для синтеза заданные количества нитрата цинка, олеиламина, олеиновой кислоты и гексадекана помещают в колбу и нагревают до 80-100°C с последующей выдержкой при данной температуре в течение 15-30 минут. Нагрев осуществляют при помощи колбонагревателя с контролем температуры реакционной смеси с использованием выносной термопары. Изотермическая выдержка при данной температуре приводит к полному растворению нитрата цинка в реакционной среде с формированием карбоксилатов цинка (олеата цинка). После полного растворения нитрата цинка к реакционной смеси добавляют заданное количество дифенилового эфира, после чего колбу нагревают до температуры 150-320°C с последующей изотермической выдержкой при данной температуре в течение 60-240 минут.

Полученный раствор охлаждают, добавляют к нему 3-кратный избыток ацетона, после чего наблюдается выпадение белого осадка (коагулировавших коллоидных частиц оксида цинка). Осадок отделяют центрифугированием, после чего редиспергируют его в гептане.

Анализ полученных коллоидных растворов производят с использованием методов оптической спектроскопии (на спектрофотометре OceanOptics QE-6500 с последующим определением положения края полосы поглощения, расчетом ширины запрещенной зоны оксида цинка и расчетом размеров частиц с использованием модели эффективных масс) и просвечивающей электронной микроскопии (на просвечивающем электронном микроскопе Leo 912AB с последующим определением из фотографий размера 200-300 частиц и определением среднего размера частиц). Согласно литературным данным, механизм формирования оксида цинка из ионов Zn2+ в описанных выше условиях заключается в высокотемпературном сольволизе карбоксилата цинка с образованием связи Zn-OH; в ходе последующей дегидратации происходит образование ZnO.

Было установлено, что синтез при температурах ниже 175°С не приводит к формированию коллоидных частиц оксида цинка. Также было показано, что термическая обработка при температурах выше 275°С приводит к формированию полидисперсного продукта, содержащего частицы кристаллического оксида цинка размером 10-10000 нм. В то же время в диапазоне 200-250°С наблюдается формирование коллоидных частиц оксида цинка, растворимых в неполярных растворителях. Исследование влияния температуры синтеза на микроморфологию получаемых частиц показало, что увеличение температуры синтеза закономерно приводит к увеличению среднего размера частиц как по данным оптической спектроскопии, так и по данным ПЭМ. В то же время увеличение продолжительности синтеза также способствует некоторому снижению среднего размера частиц, что может свидетельствовать о растворимости частиц ZnO в реакционной среде. Было также исследовано влияние добавление в реакционную среду инертного высококипящего растворителя (гексадекана). Было установлено, что добавление гексадекана закономерно способствует снижению размера частиц. Таким образом, варьирование исследованных нами параметры синтеза (температура, продолжительность, состав реакционной среды) позволяет получать коллоидные растворы ZnO с характерным размером частиц 4-10 нм.

Пример 1

Для приготовления коллоидных растворов оксида цинка 0,600 г нитрата цинка, 20 мл олеиламина, 2 мл олеиновой кислоты помещают в реактор (трехгорлую колбу) с инертной атмосферой (аргон), нагревают до 90°С, выдерживают при этой температуре 15 минут, добавляют 2 мл дифенилового эфира, нагревают смесь до 250°С, выдерживают при данной температуре 1 час. К полученному раствору добавляют 60 мл ацетона, выпавший осадок отделяют центрифугированием, отцентрифугированный осадок растворяют в 10 мл гептана для получения оптически прозрачного коллоидного раствора. Полученные коллоидные частицы имеют характерный размер 8 нм.

Пример 2

Для приготовления коллоидных растворов оксида цинка 0,600 г нитрата цинка, 10 мл олеиламина, 10 мл гексадекана, 2 мл олеиновой кислоты помещают в реактор (трехгорлую колбу) с инертной атмосферой (аргон), нагревают до 90°С, выдерживают при этой температуре 15 минут, добавляют 2 мл дифенилового эфира, нагревают смесь до 250°С, выдерживают при данной температуре 1 час. К полученному раствору добавляют 60 мл ацетона, выпавший осадок отделяют центрифугированием, отцентрифугированный осадок растворяют в 10 мл гептана для получения оптически прозрачного коллоидного раствора. Полученные коллоидные частицы имеют характерный размер 6 нм.

Пример 3

Для приготовления коллоидных растворов оксида цинка 0,600 г нитрата цинка, 10 мл олеиламина, 10 мл гексадекана, 2 мл олеиновой кислоты помещают в реактор (трехгорлую колбу) с инертной атмосферой (аргон), нагревают до 90°С, выдерживают при этой температуре 15 минут, нагревают смесь до 200°С, выдерживают при данной температуре 4 час. К полученному раствору добавляют 60 мл ацетона, выпавший осадок отделяют центрифугированием, отцентрифугированный осадок растворяют в 10 мл гептана для получения оптически прозрачного коллоидного раствора. Полученные коллоидные частицы имеют характерный размер 5 нм.

Таким образом, разработанный метод синтеза позволяет получать коллоидные растворы наночастиц оксида цинка в неполярных растворителях. Преимуществами настоящего изобретения являются использование в качестве цинкового прекурсора нитрата цинка, что позволет значительно снизить стоимость синтеза за счет отказа от использования дорогостоящих цинкорганических реагентов, и одностадийность процесса, что приводит к сокращению числа технологических стадий и, как следствие, упрощению и удешевлению производства.

1. Способ получения коллоидного раствора оксида цинка в неполярном растворителе, включающий нагрев исходной реакционной смеси, содержащей олеиламин, олеиновую кислоту и неорганический цинксодержащий прекурсор, в инертной атмосфере, изотермическую выдержку, добавление полярного растворителя, отделение скоагулировавших наночастиц центрифугированием и растворение осадка в неполярном растворителе, отличающийся тем, что в качестве цинксодержащего прекурсора используют нитрат цинка, а нагрев реакционной смеси осуществляют до 80-100°С с изотермической выдержкой в течение 15-30 мин для растворения нитрата цинка и последующий нагрев до 200-250°С с изотермической выдержкой в течение 1-4 ч.

2. Способ по п.1, отличающийся тем, что после растворения нитрата цинка в реакционную смесь добавляют дифениловый эфир.

3. Способ по п.1, отличающийся тем, что в исходную реакционную смесь дополнительно добавляют гексадекан.



 

Похожие патенты:

Изобретение относится к очистке загрязненной воды, агрессивных жидкостей, механическому разделению растворов с помощью керамического фильтра и технологии его изготовления.

Изобретение относится к области сканирующей зондовой микроскопии, а именно к способам изготовления измерительных зондов. .

Изобретение относится к области металлургии, в частности к устройствам для получения покрытий из материалов с эффектом памяти формы на цилиндрической поверхности деталей.
Изобретение относится к области производства оптических материалов, прозрачных в инфракрасной (ИК) области спектра с высоким коэффициентом пропускания и повышенной механической прочностью.
Изобретение относится к способу получения нанодисперсного гидроксиапатита осаждением из растворов солей кальция и фосфатов щелочных металлов и/или аммония в присутствии биополимера, например желатина или крахмала, концентрацией 0,1-1 мас.%.

Изобретение относится к носителю, к способу его производства, к катализатору для эпоксидирования олефинов, включающему носитель, и к способу окисления этилена до окиси этилена.
Изобретение относится к области сканирующей зондовой микроскопии. .

Изобретение относится к области туннельной и атомно-силовой микроскопии, а точнее к устройствам, обеспечивающим градуировку сканирующих зондовых микроскопов (СЗМ) на нанометровом уровне.

Изобретение относится к технологии получения волокнистых углеродных материалов методом пиролиза ароматических и неароматических углеводородов. .

Изобретение относится к импульсным способам формирования активного корочкового слоя прямопоточного трубчатого катализатора гетерогенных химических реакций. .
Изобретение относится к способам получения наноструктурных металлических и биметаллических частиц с размерами структурных образований порядка нанометров. .

Изобретение относится к технологии получения наночастиц благородных металлов из водных растворов их прекурсоров, таких как серебро, золото, платина. .
Изобретение относится к способам получения катализатора дожигания топлива в промышленности и автомобилях. .

Изобретение относится к получению наночастиц металлов, сплавов металлов, оксидов металлов и оксидов нескольких металлов. .
Изобретение относится к химической промышленности, в частности к способам получения порошка металлического никеля, который может быть использован в качестве катализатора или легирующего элемента для получения точных сплавов.

Изобретение относится к получению наночастиц металлов или гибридов наночастиц металлов. .

Изобретение относится к нанотехнологии, а именно к получению наноразмерных частиц халькогенидных материалов, используемых в приемниках излучения, солнечных элементах, волноводах, лазерных окнах, видиконах и в других функциональных элементах электронных устройств и приборов.
Изобретение относится к нанотехнологии и может быть использовано для эффективного изменения физико-химических свойств образованной на поверхности наночастиц неорганической природы лигандной оболочки.

Изобретение относится к порошковой металлургии, в частности к серебряным порошкам для электродов химических источников тока и металлокерамических контактов и способу их получения.

Изобретение относится к порошкам серебро-оксид кадмия и способам их получения и может быть использовано в электронике. .

Изобретение относится к получению наноразмерных порошков металлов
Наверх