Источник ионизации на основе барьерного разряда

Изобретение относится к области газового анализа и предназначено для применения в качестве ионизатора в спектрометрах ионной подвижности, масс-спектрометрах и других аналитических приборах. Источник ионизации на основе барьерного заряда состоит из ионизационной камеры, включающей индуцирующий электрод, прикрепленный к поверхности диэлектрической пластины и коронирующий электрод, расположенный напротив индуцирующего электрода, а также источника импульсов высокого напряжения, причем коронирующий электрод отделен от поверхности диэлектрической пластины газовым промежутком 10-100 мкм, а к ионизационной камере подключена система подачи очищенного газа, выполненная с возможностью регулирования объемной скорости газового потока. Технический результат - управление составом и количеством генерируемых ионов, позволяющее повысить чувствительность обнаружения следовых количеств веществ в газовой фазе. 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к области газового анализа и может быть использовано для генерации положительно и отрицательно заряженных ионов из очищенного воздуха или других газов. Изобретение предназначено для применения в качестве ионизатора в спектрометрах ионной подвижности, масс-спектрометрах и других аналитических приборах.

Одним из применений источников ионизации является детектор спектрометра ионной подвижности. В большинстве спектрометров ионной подвижности и, особенно портативных, применяют радиоактивные источники ионизации, на основе радиоактивных веществ ,таких как тритий и никель 63, являющихся источниками бета-излучения. В результате ионизации, под воздействием бета-излучения, при атмосферном давлении в области ионизации образуются положительно и отрицательно заряженные ионы. Эти ионы впоследствии взаимодействуют с молекулами веществ, подлежащих обнаружению, с образованием ионных кластеров, которые разделяются в электрическом поле и регистрируются измерительной системой.

Преимуществами радиоактивных источников ионизации являются их простота, стабильность и отсутствие электрических помех. Кроме того, эти источники не потребляют дополнительной энергии. Тем не менее существуют нормативные препятствия, затрудняющие применение приборов с такими источниками ионизации, которые связаны с требованиями безопасности эксплуатации радиоактивных источников ионизации и проблемами их утилизации.

Альтернативой радиоактивному источнику ионизации для применения в спектрометрах ионной подвижности может быть источник ионизации на коронном разряде. Преимуществом ионизатора на коронном разряде является возможность получения более высоких концентраций ион-реагента, чем в случае применения радиоактивного источника ионизации. Это приводит к снижению пределов обнаружения токсических веществ и расширяет концентрационный динамический диапазон. Кроме того, ионизаторы на коронном разряде имеют более низкую стоимость. При генерации положительных ионов состав образуемых в радиоактивном ионизаторе и ионизаторе на коронном разряде ионов практически идентичен. При генерации отрицательных ионов источник ионизации на коронном разряде имеет существенный недостаток - это сложный и не оптимальный состав, в котором преобладают малоактивные ионы оксидов азота, оксидов углерода и озона при незначительном содержании высокоактивных ионов кислорода. [M.Tabrizchi, T.Khayamian, N.Taj, Rev. Sci. Instr. 71 (2000) 2321].

При этом ряд факторов существенно влияет на ионный состав, и, как следствие, на пределы обнаружения токсических веществ. Такими факторами являются постоянный или переменный характер напряжения, приложенного к ионизатору на коронном разряде, величина напряжения, потенциал смещения. Также имеет значение конструкция ионизатора. Кроме того, влияние на ионный состав может оказывать направление и скорость газовых потоков в ионизационной камере [Andrew J Bell and Stuart K Ross, Reverse Flow Continuous Corona Discharge lonisation, IJIMS 5(2002) 95-99]. При оптимальных значениях постоянного напряжения и значительных величинах скорости газовых потоков доля высокоактивных ионов кислорода может достигать одной трети от доли малоактивных ионов.

В качестве прототипа рассматривается патент США №7,157,721 от 02.02.2007, в котором предложен источник ионизации для генерации отрицательных ионов, состоящий из диэлектрической пластины, к которой с противоположенных сторон прикреплены электроды, отличающиеся по размеру. Далее в описании изобретения больший электрод назван индуцирующим, меньший - коронирующим. Для генерации ионов к электродам подводится высоковольтное радиочастотное напряжение. Форма и периметр коронирующего электрода 1 определяет количество генерируемых ионов. Когда источник ионизации находится в замкнутом объеме, в основном образуются ионы оксидов азота, а в открытом объеме образуются преимущественно ионы оксидов углерода и в незначительном количестве ионы кислорода и озона. При применении такого источника ионизации в детекторе ионной подвижности может быть проведено детектирование гексогена и нитроглицерина. Однако при применении данного источника ионизации не могут быть обнаружены следовые количества многих классов химических веществ, вступающих во взаимодействие только с ионами кислорода.

Задачей предлагаемого изобретения является возможность управления составом и количеством генерируемых ионов для расширения списка обнаруживаемых веществ.

Для решения поставленной задачи предложен источник ионизации на основе барьерного разряда, состоящий из ионизационной камеры, включающей индуцирующий электрод, прикрепленный к поверхности диэлектрической пластины и коронирующий электрод, расположенный напротив индуцирующего электрода, а также источника импульсов высокого напряжения, причем коронирующий электрод отделен от поверхности диэлектрической пластины газовым промежутком 10-100 мкм, а к ионизационной камере подключена система подачи очищенного газа, выполненная с возможностью регулирования объемной скорости газового потока.

Сущность изобретения заключается в том, что предложенная совокупность признаков позволяет генерировать как положительные, так и отрицательные ионы, причем состав и количество отрицательных ионов может управляться в зависимости от напряжения и объемной скорости газового потока в ионизационной камере. С помощью предлагаемого источника ионизации на основе барьерного заряда появляется возможность обнаружения химических веществ, например, в детекторе спектрометра ионной подвижности, ранее затрудненных или невозможных к обнаружению при помощи существующих источников на основе коронного разряда.

На фигуре 1 изображена схема источника ионизации на основе барьерного разряда.

На фигуре 2 изображена схема установки для регистрации спектров ионной подвижности.

На фигуре 3 изображена спектрограмма смеси метилсалицилата

Схема источника ионизации, изображенного на фигуре 1, включает ионизационную камеру 1, впускной патрубок 2 и выпускной патрубок 3, присоединенные к ионизационной камере 1. Диэлектрическая пластина 4, изготовленная из оксида алюминия или двух, или трехкомпонентных оксидных материалов с диэлектрической проницаемостью не ниже 20 и шлифованной поверхностью шероховатостью Rz величиной не менее 2-5 мкм, вмонтирована в ионизационную камеру 1. Индуцирующий электрод 5 прикреплен к поверхности диэлектрической пластины 4. Коронирующий электрод 6 расположен на расстоянии 10-100 мкм от диэлектрической пластины 4. Источник высоковольтного напряжения 7 подключен к индуцирующему электроду 5 и коронирующему электроду 6. Вытягивающий электрод 8 вмонтирован в ионизационную камеру, а система подачи очищенного газа (воздуха) 9 подключена к впускному патрубку 2. Коронирующий электрод 6 может быть выполнен в виде диска толщиной 0,1-0,2 мм и, предпочтительно, изготовлен из никеля или золота. Рабочая зона диска расположена напротив индуцирующего электрода и представляет собой группу профилированных отверстий с заостренной рабочей кромкой. В другом исполнении коронирующий электрод может быть выполнен в виде кольца с закрепленными в рабочей зоне одной или несколькими металлическими проволоками диаметром 0,015-0,024 мм. Материал проволок - предпочтительно золото, никель. Возможно применение проволок из других металлов, таких как W, Pt, Nb, Та.

Для улучшения условий ионизации поверхность диэлектрической пластины со стороны коронирующего электрода должна обладать определенной шероховатостью Rz величиной не менее 2-5 мкм.

Для генерации ионов на источник ионизации на основе импульсного объемного барьерного заряда подается высоковольтное напряжение величиной 1-2 кВ при наличии подставки напряжением до 1 кВ.

В другом варианте на ионизатор подается высоковольтное напряжение радиочастоты величиной 1-2 кВ при наличии подставки до 1 кВ.

Ионный состав отрицательных ионов может изменяться от от O2-, CO2·O2- и (H2O)nO2 до NOx-, CO3- и O3- в зависимости от величины высоковольтного напряжения и объемной скорости очищенного воздуха, поступающего в ионизационную камеру.

Состав положительных ионов остается практически постоянным.

Количество генерируемых ионов может управляться за счет величины высоковольтного напряжения и конструкции коронирующего электрода.

При применении источники ионизации на основе объемного барьерного разряда в ион-дрейфовом спектрометре для генерации положительно и отрицательно заряженных ионов в ионизационной камере при атмосферном давлении в среде очищенного воздуха или других газов коронирующий электрод 6 так же является выталкивающим электродом.

Источник высоковольтного напряжения 7 производит управляемые импульсы высокого напряжения величиной 0,5-2 кВ с частотой 10-50 Гц, при наличии подставки высоковольтного напряжения величиной до 1 кВ, в другом варианте высоковольтный источник производит высоковольтное напряжение радиочастоты величиной 0,5-2 кВ при наличии подставки высоковольтного напряжения величиной до 1 кВ.

При приложении высоковольтного напряжения между индуцирующим электродом 5 и коронирующим электродом 6 возникает коронный разряд, который ионизирует молекулы воздуха. На поверхности диэлектрической пластины 4 с определенной шероховатостью Rz, не менее 2-5 мкм, за счет возникновения локальных неоднородностей электрического поля, условия ионизации улучшаются. Во время ионизации идет процесс диссоциации молекул кислорода, что в дальнейшем приводит к образованию озона и окислов азота, следствием чего происходит образование малоактивных ионов. Для предотвращения этого негативного процесса область ионизации обдувается чистым сухим газом (воздухом), который создается системой подачи очищенного газа 9 и подается через входной патрубок 2. Молекулы озона и окислы азота удаляются из ионизационной камеры через выпускной патрубок 3.

На фигуре 2 приведена схема установки, на которой регистрировались спектры ионной подвижности. Источник ионизации на основе барьерного разряда 10 присоединен к детектору спектрометра ионной подвижности 11, ток, создаваемый ионами, образующимися в детекторе, преобразуется усилителем 12 и отображается устройством регистрации 13. Для определения доли высокоактивных ионов кислорода в детектор спектрометра ионной подвижности вводился метилсалицилат. На фигуре 3 приведен вид спектра метилсалицилата. Молекулы метилсалицилата образуют кластеры только с ионами кислорода и не взаимодействуют с малоактивными ионами. Подвижность ионов кислорода составляет 2,16 см2В-1с-1 и на спектре ионной подвижности ионам кислорода соответствует пик 14 (6,4 мс). Подвижность кластера молекулы метилсалицилата с ионом кислорода 1,56 см2В-1с-1, что соответствует на спектре пику 15 (9,8 мс). [Andrew J Bell and Stuart К Ross, Reverse Flow Continuous Corona Discharge lonisation, IJIMS 5(2002) 95-99]. По соотношению пиков видно, что в ионизированном воздухе преобладают ионы кислорода.

1. Источник ионизации на основе барьерного разряда, состоящий из ионизационной камеры, включающей индуцирующий электрод, прикрепленный к поверхности диэлектрической пластины, и коронирующий электрод, расположенный напротив индуцирующего электрода, а также источника импульсов высокого напряжения, отличающийся тем, что коронирующий электрод отделен от поверхности диэлектрической пластины газовым промежутком 10-100 мкм, а к ионизационной камере подключена система подачи очищенного газа с возможностью регулирования объемной скорости газового потока.

2. Источник по п.1, отличающийся тем, что диэлектрическая пластина изготовлена из оксида алюминия и/или двух или трехкомпонентных оксидных керамических материалов с диэлектрической проницаемостью не ниже 20.

3. Источник по п.1, отличающийся тем, что поверхность диэлектрической пластины со стороны коронирующего электрода обладает шероховатостью Rz величиной не менее 2-5 мкм.

4. Источник по п.1, отличающийся тем, что коронирующий электрод выполнен в виде кольца с закрепленными в рабочей зоне как минимум одной металлической проволокой диаметром 0,015-0,025 мм.



 

Похожие патенты:

Изобретение относится к технике генерирования ионов для выведения в замкнутое пространство и может быть использовано для повышения эффективности работы систем, где требуется очистка, снижение токсичности и т.п.

Ионизатор // 2388125
Изобретение относится к технике газовых разрядов. .

Изобретение относится к области метеорологии и может быть использовано для локального изменения метеоусловий и локального улучшения экологической обстановки в выбранной зоне.

Изобретение относится к медицинской технике, технике воздухоочистки и кондиционирования воздуха по ионному составу и может быть использовано для электрической ионизации атмосферного воздуха в целях лечения и профилактики ряда болезней человека в стационарных условиях, санаторно-профилактических и бытовых условиях, а также в целях обеспечения жизнедеятельности экипажа в закрытых кабинах.

Изобретение относится к высоковольтной импульсной технике и может быть использовано в химической промышленности для ионизации различных газовых сред, в лакокрасочной промышленности для нанесения порошковых полимерных материалов на металлоизделия, в медицинской технике для ионизации воздуха в лечебных и профилактических целях, в сельском хозяйстве для обработки и хранения сельскохозяйственной продукции с помощью озоновоздушного агента, в электростатических фильтрах, кондиционерах и т.д.

Изобретение относится к электротехнике и может быть использовано для генерации заряженных частиц, например, в процессах аэроионизации, электрогазоочистки, электроосаждения, а также для производства электроэнергии.

Изобретение относится к беспроволочной передачи электрической энергии в атмосфере (воздухе) на большие расстояния на основе инициирования электрических разрядов с помощью лазерного излучения, в котором для формирования плазменного канала вместо использования длиннофокусных оптических систем формируют относительно короткофокусную оптическую систему совместным многократно повторяющимся силовым воздействием на окружающую атмосферу интенсивным лазерным излучением и передаваемым зарядом электронов, предварительно ускоренных до релятивистских или близких к ним энергий.

Изобретение относится к электротехнике и может быть использовано для генерации заряженных частиц в процессах аэроионизации, электрогазоочистки, электроосаждения, а также для генерации электроэнергии.

Изобретение относится к устройствам, предназначенным для введения ионов в незамкнутое воздушное пространство с помощью эмиссии ионов за счет электрического поля, и может быть использовано в медицине, ветеринарии, а также растениеводстве, животноводстве и других биотехнологиях.

Изобретение относится к электротехнике и может быть использовано при конструировании электроустановок для создания объемного разряда, например, в лазерных установках, или для проведения химических реакций, таких, как получение озона, очистка газов и др.

Изобретение относится к области создания полупроводниковых приборов методом легирования и предназначено для получения направленных потоков (пучков) ионов. .

Изобретение относится к ускорительной технике. .

Изобретение относится к области масс-спектрометрии и может быть использовано в анализаторах атомных частиц, масс-спектрометрах, в частности в магнитных резонансных масс-спектрометрах.

Изобретение относится к области аналитического приборостроения и может быть использовано при решении задач органической и биоорганической химии, биотехнологии и экологии, в частности в системах для определения состава и количества химических соединений в виде газовой фазы, растворов и биологических жидкостей

Изобретение относится к области плазменной техники. Технический результат - повышение мощности автоэмиссионного источника ионов за счет одновременного повышения силы тока и энергии ионов в пучке. Устройство создания мощных ионных потоков состоит из вакуумной камеры с источником ионов и двух электродов - анода и катода, между которыми создается разность потенциалов. Источник ионов выполнен в виде резервуара с жидкостью, соединенного с нагревательным элементом или с криогенной установкой, внутри которого установлен анод, причем анод и стенки резервуара расположены с зазором, создающим капиллярное движение потока жидкости из резервуара, катод выполнен в форме пластины со щелью, расположенной над анодом, который выполнен в виде системы соосных цилиндров, расположенных относительно друг друга с зазором, а катод выполнен в форме пластины с системой щелей. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области аналитического приборостроения. Источник ионов для масс-спектрометра первому варианту включает камеру (1), в первом торце (2) камеры (1) выполнено отверстие (3), в котором размещено устройство (4) электрораспыления пробы. В боковой стенке (5) камеры (1) у первого торца (2) установлена по касательной к боковой стенке (5) по меньшей мере одна трубка (7) для подачи в камеру (1) нагретого сжатого газа. Во втором торце (9) камеры (1) установлен первый электрод (11) с центральным отверстием (12) для выхода ионов, окруженный вторым электродом (13) с отверстием (14) в центральной области, образующим с первым электродом (9) электростатическую фокусирующую линзу для ионов (15). В боковой стенке (5) камеры (1) выполнено по меньшей мере одно отверстие (13) для выхода газа и неиспарившихся капель пробы, отстоящее от второго торца (8) на расстояние d, удовлетворяющее определенному соотношению. По второму варианту отверстие (44), в котором размещено устройство (4) электрораспыления пробы, выполнено в боковой стенке (43) камеры (40), а в первом торце (41) камеры (40) выполнено отверстие (42) для выхода газа. Технический результат - повышение доли заряженных частиц, в первую очередь ионов, поступающих из источника ионов на вход в масс-спектрометр. 2 н. и 18 з.п. ф-лы, 10 ил.

Изобретение относится к области приборостроения. Технический результат - увеличение светосилы ионного источника тлеющего разряда за счет уменьшения диффузионных потерь ионов в разрядной камере. Источник тлеющего разряда содержит размещенные с зазором и соосно цилиндрические полый анод, имеющий профилированную донную часть, и полый катод, размещенный в полости анода со стороны его открытого торца, совместно образующие разрядную камеру. Выходом камеры является осевое отверстие для вытягивания ионов и откачки, образованное в донной части полого анода. Профиль донной части анода выполнен с возможностью одновременной самофокусировки электронного потока из полого катода в зону осевого отверстия разрядной камеры и формирования параболического электрического поля на выходе из камеры, при этом донная часть анода, обращенная внутрь камеры, имеет форму выпуклого конуса, а обращенная наружу - поверхность вогнутой сферической формы. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области аналитического приборостроения и может быть использовано для высокочувствительного анализа состава растворов, находящихся при атмосферном давлении. Исследуемый раствор помещается в каналы диэлектрической мембраны, откуда ионы экстрагируются в вакуум импульсами сильного электрического поля. При этом распыление самого раствора не происходит. Для реализации этого способа предлагается устройство, в котором за счет конструкции электродов обеспечивается возможность быстрого формирования электрических полей, стимулирующих эффективную экстракцию ионов, из раствора, находящегося в каналах мембраны. Существенными признаками, отличающими изобретение являются: 1) возможность прямого управления электрическим полем, экстрагирующим ионы; 2) отсутствие переходных процессов при запуске устройства, изменении напряжений, приложенных к его электродам, или замене пробы; 3) возможность повышения интенсивности выхода ионов из раствора за счет использования импульсных электрических полей с существенно большей напряженностью; 4) более низкий расход анализируемых ионов, содержащихся в растворе, за счет согласования потока экстрагируемых ионов с периодичностью их разделения и регистрации во времяпролетных приборах; 5) существенное повышение чувствительности при регистрации ионного состава растворов за счет более эффективного использования всех каналов мембраны и снижения фоновых шумов; 6) возможность прямого ввода ионов из раствора во времяпролетную камеру анализатора без дополнительной модуляции ионного потока. Технический результат - обеспечение стабильного и управляемого транспорта ионов из полярного раствора в вакуум в контролируемых условиях в течение длительного времени. 2 н. и 4 з.п. ф-лы, 6 ил.

Изобретение относится к области метрологии и может быть использовано для определения частоты и времени, в частности при создании атомных стандартов частоты и атомных часов. В заявленном способе получения и детектирования ионов изотопов торий-229 и торий-232 с различной кратностью заряда предусмотрено испарение и ионизация тория, фильтрация ионов по энергии и фильтрация ионов по отношению массы к заряду, улавливание ионов тория выбранной степени заряда в квадрупольной ионной ловушке линейной конфигурации. Далее осуществляют охлаждение ионов тория выбранной степени заряда в квадрупольной ионной ловушке линейной конфигурации до тепловых температур при напуске гелия, воздействие на охлажденные ионы тория лазерным излучением для охлаждения и спектроскопического исследования, испарение и ионизация до необходимого зарядового состояния тория, предварительно осажденного на вольфрамовом стержне и содержащего изотопы 229Th и 232Th, пучком электронов энергией 0.6-1 кэВ, эмитируемых с нагретого катода. Затем производится фильтрация ионов по энергии в энергетическом диапазоне шириной не более 4 эВ, соответствующем максимальному числу ионов необходимой степени заряда, замедление ионов до энергии не более 5 эВ и фильтрация ионов по отношению массы к заряду методом квадрупольной масс-спектрометрии. Техническим результатом изобретения является повышение эффективности использования пробы, уменьшение ее необходимого количества и снижение опасности накопления используемых радиоактивных материалов, уменьшение вариации числа загружаемых в ловушку ионов. 7 ил.
Наверх