Способ получения корундовой керамики

Изобретение относится к способам получения корундового керамического материала, предназначенного для изготовления изделий из конструкционной керамики с повышенными статическими нагрузками. Согласно изобретению глинозем смешивают с минерализатором, характеризующимся вязкостью от 1 до 5 Па·с и поверхностным натяжением (50-250)·10-3 Н/м в температурном интервале обжига керамики в количестве 1-2 мас.% по катион-кислородному компоненту, получают спек при температуре 1300°С. Спек измельчают, прессуют и проводят обжиг при температуре 1350-1400°С. В качестве минерализующей добавки используются хлориды щелочных и щелочноземельных металлов КСl, MgCl2, LiCl, CaCl2, NaCl, BaCl2. Техническим результатом является понижение температуры спекания керамики при одновременном повышении предела прочности при изгибе. 2 табл.

 

Изобретение относится к способам получения корундового керамического материала, предназначенного для изготовления изделий из конструкционной керамики с повышенными статическими нагрузками.

Известен способ получения высококачественной конструкционной корундовой керамики со стеклодобавкой - минерализатором, содержащим оксиды кремния, кальция и бора в массовом соотношении 1:1:1 и спеченным при 900-1000°С. При этом шихта дополнительно содержит фторидосодержащую добавку в количестве 0,5-1 мас.%., а обжиг керамики проводят при температуре 1500-1550°С (пат. №2119901, МПК С04В 35/10, С04В 35/18, от 10.06.97, опубл. 10.10.1998 г.). Недостатком известного способа является повышенная температура обжига керамики.

Наиболее близким к заявляемому способу является способ получения корундового керамического материала, предназначенного для изготовления изделий из конструкционной керамики со стеклодобавкой минерализатором, содержащим оксиды магния, кальция, кремния и бора при массовом соотношении 0,5:0,5:1:1 (пат. №2171244, МПК С04В 35/111, от 10.04.2000, опубл. 27.07.2001 г.). Обжиг керамики проводят при 1440-1460°С, а шихта имеет следующее соотношение компонентов, мас.%:

Гидрооксид алюминия и/или глинозем
в пересчете на оксид алюминия 88-92
Стеклодобавка 8-12

Недостатком наиболее близкого к заявляемому известного способа является повышенная температура обжига керамики (1440-1460°С), а также необходимость предварительного спекания стеклодобавки - минерализатора (8-12 мас.%) при достаточно высоких температурах 900-1000°С. Использование высоковязкой минерализующей добавки - стеклобоя (вязкость в температурном интервале обжига керамики 106 Па·с) в незначительной степени способствует переводу процесса спекания в область более низких температур.

Задачей предлагаемого способа является получение корундовой керамики, имеющей более низкую температуру спекания при повышенных прочностных характеристиках.

В этом состоит новый технический результат, находящийся в причинно-следственной связи с существенными признаками изобретения.

Существенные признаки изобретения заключаются в том, что глинозем смешивают с минерализатором в виде хлоридов щелочных и щелочеземельных металлов КСl, MgCl2, LiCl, CaCl2, NaCl, BaCl2, характеризующихся вязкостью от 1 до 5 Па·с и поверхностным натяжением (50-250)·10-3 Н/м в температурном интервале обжига керамики в количестве 1-2 мас.% по катион-кислородному компоненту, приготовление спека осуществляют при температуре 1300°С, а обжиг проводят при температуре 1350-1400°С.

Минерализующие добавки в глинозем вводили с учетом эквивалентного содержания в них минерализующего компонента (катион-кислородного компонента). Фактическое соотношение количества введенного минерализатора и количества катион-кислородного компонента в нем приведено в таблице 1. При этом сравнение минерализующего эффекта в зависимости от вязкости и поверхностного натяжения добавок осуществляется по одинаковому количеству введенных с минерализатором оксидов металлов.

Использование минерализатора с вязкостью от 1 до 5 Па·с и поверхностным натяжением (50-250)·10-3 Н/м в температурном интервале обжига керамики обеспечивает существенное снижение температуры обжига за счет образования жидкой фазы высокой реакционной активности с низкой вязкостью и низким поверхностным натяжением расплава минерализатора. Содержание минерализатора в заявляемых количествах (1-2 мас.% по катион-кислородному компоненту) обеспечивает существенное повышение прочностных характеристик.

Способ осуществляется следующим образом. Глинозем и минерализатор с вязкостью от 1 до 5 Па·с и поверхностным натяжением (50-250)·10-3 Н/м в температурном интервале обжига керамики в количестве 1-2 мас.% по катион-кислородному компоненту тщательно измельчают до фракции 1-3 мкм и смешивают в заявленном соотношении. Полученную шихту синтезируют при температуре 1300°С и вновь измельчают, преимущественно в вибромельнице. Из полученной шихты формуют образцы при давлении формования 80-100 МПа, а далее обжигают при температуре 1350-1400°С.

Данные по виду минерализатора, его содержанию в керамической массе, температуре спекания и прочностным характеристикам обожженных изделий по заявляемому способу в сравнении с прототипом представлены в табл.1. Обоснование оптимального количества минерализатора по заявляемому способу представлено в табл.2 и приведено по отношению к самой эффективной минерализующей добавке КСl, обладающей минимальной вязкостью (вязкость 1 Па·с в температурном интервале обжига керамики).

Анализ данных табл.1 свидетельствует о перспективности использования при получении корундовой керамики минерализующих добавок, характеризующихся вязкостью от 1 до 5 Па·с и поверхностным натяжением (50-250)·10-3 Н/м в температурном интервале обжига керамики. Использование высоковязких минерализующих стеклодобавок (вязкость в температурном интервале обжига керамики - 106 Па·с) не обеспечивает преимущества по температуре спекания и показателям прочности при изгибе в сравнении с низковязкими минерализаторами, заявляемыми в способе. Низковязкие минерализаторы образуют высокоподвижную, маловязкую и однородную жидкую фазу, что в свою очередь приводит к более раннему созреванию материала, активации процесса формирования основной кристаллической фазы - корунда и, как следствие, повышению качества изделий при более низких температурах спекания.

Таблица 2
Вид минерализатора Содержание минерализатора Температура Прочность при изгибе,
по катион-кислородному обжига, °С МПа
компоненту, мас.%
1 К2О 1380 430
КСl 2 К2О 1350 460
3 К2О 1370 420

Способ получения корундовой керамики, включающий измельчение и смешивание глинозема с минерализующими добавками, получение опека, его измельчение, прессование и обжиг керамики, отличающийся тем, что глинозем смешивают с минерализующими добавками в виде хлоридов щелочных и щелочноземельных металлов КСl, MgCl2, LiCl, CaCl2, NaCl, BaCl2 с вязкостью от 1 до 5 Па·с и поверхностным натяжением (50-250)·10-3 Н/м, в температурном интервале обжига керамики в количестве 1-2 мас.% по катионкислородному компоненту, спек получают при температуре 1300°С, а обжиг керамики проводят при температуре 1350-1400°С.



 

Похожие патенты:
Изобретение относится к способам получения и использования расклинивающих агентов для разрыва породы, а также получения и использования добавок, препятствующих притоку в ствол скважины, для использования в операциях гидравлического разрыва.
Изобретение относится к области получения изоляционных огнеупорных материалов и может быть использовано в производстве изоляторов металлокерамических ламп, свечей зажигания, изоляционных установочных деталей.
Изобретение относится к керамическому материаловедению на базе оксида алюминия с использованием золь-гелиевых способов получения композиционных материалов и может быть использовано в процессе изготовления изделий, устойчивых к воздействию динамических и статических нагрузок и с высокой термостойкостью.
Изобретение относится к производству керамических изделий, в частности к получению материалов на основе оксида алюминия, которые используются при изготовлении износостойких керамических деталей.

Изобретение относится к технологии композиционных материалов, относящихся к классу керметов, и может быть использовано для получения прочных, износостойких изделий с относительно невысокой объемной массой, а также для изготовления абразивного инструмента со специальными поверхностными свойствами.

Изобретение относится к способам получения корундового керамического материала, предназначенного для изготовления изделий из конструкционной керамики: износо- и химически стойких деталей оборудования, выдерживающих высокие статические нагрузки.

Изобретение относится к керамическим материалам на основе оксида алюминия и может быть использовано для изготовления деталей трения, работающих в условиях абразивного и гидроабразивного износа.

Изобретение относится к технологии высокотемпературных керамических материалов конструкционного назначения с повышенными термомеханическими свойствами (футеровка тепловых агрегатов, термостойкий огнеприпас, элементы ударопрочной защиты)

Изобретение относится к технологии получения керамических изделий на основе оксида алюминия с высокими механическими характеристиками, предназначенных для длительной эксплуатации в условиях повышенных истирающих нагрузок
Изобретение относится к волокнам из поликристаллического корунда, по существу состоящим из корунда и оксида элементов главных подгрупп I или II группы Периодической таблицы, которые могут быть использованы для изготовления тканей и композитных материалов
Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов и предназначено для использования в процессах обращения с газообразными радиоактивными отходами (ГРО) и отработанным ядерным топливом (ОЯТ) на АЭС и радиохимических предприятиях атомной отрасли
Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани
Изобретение относится к способам получения корундового керамического материала, предназначенного для изготовления изделий из конструкционной керамики с повышенными статическими нагрузками. Технический результат - получение корундовой керамики, имеющей низкую температуру обжига при высоких показателях прочности при изгибе. В способе получения корундовой керамики, включающем измельчение и смешивание глинозема с предварительно спеченной стеклодобавкой-минерализатором и фторсодержащей добавкой, прессование и обжиг керамики, согласно изобретению, в качестве стеклодобавки-минерализатора используют трехкомпонентную стеклообразующую систему P2O5-B2O3-SiO2 при соотношении компонентов (1-2):(0,5-1,0):(2,5-3), предварительно спеченную при температуре 400-450°С. Стеклодобавку смешивают с глиноземом и с фторидами или хлоридами щелочных металлов при следующем соотношении компонентов сырьевой смеси, масс.%: глинозем 81-83, стеклодобавка-минерализатор 15-16, фториды или хлориды щелочных металлов 2-3. Обжиг керамики проводят при температуре 1310-1340°C. 2 табл.
Изобретение относится к керамическому материаловедению, в частности к получению материала для высокотемпературного применения на основе тугоплавких бескислородных и оксидных соединений, характеризующегося высокой прочностью, термической и окислительной стойкостью, стойкостью к термоудару при градиенте температуры до 2000 К в условиях воздействия высокоскоростного окислительного потока. Технический результат заключается в возможности использования указанного керамического материала при температуре Т=1800°С при комплексном воздействии механических и тепловых нагрузок в условиях окислительных сред. Это достигается тем, что композиционный керамический материал для высокотемпературного применения в окислительных средах получают из шихты, содержащей SiC, Y2O3, Al2O3 и/или Al2O3·MgO, при следующем соотношении компонентов, (% мас.): SiC 76-80, Y2O3 4-5, Al2O3 и/или Al2O3·MgO - остальное. Получаемый керамический материал имеет следующие характеристики: плотность 99% от теоретической, прочность при изгибе 400±25 МПа, прочность при сжатии 1200±40 МПа, твердость по Виккерсу 25-27 ГПа, K1c - 8,5-10,0 МПа·м1/2, окислительная стойкость ≤0,015 мг/см2сек, рабочая температура 1800°С. 5 пр., 1 табл.
Изобретение относится к области производства технической керамики и может быть использовано, в частности, для изготовления керамических бронеэлементов. Сущность изобретения заключается в том, что в шихте для изготовления керамики, содержащей смесь частиц оксида алюминия, диоксида титана, диоксида марганца и диоксида циркония, согласно изобретению от 5 до 10% входящих в состав шихты частиц имеет средний размер не более 120 нм, а остальная часть входящих в состав шихты частиц имеет средний размер от 0,5 до 2 мкм, при этом вышеуказанные компоненты входят в состав шихты при следующем соотношении, мас.%: оксид алюминия 92-96; диоксид титана 1-3; диоксид марганца 1-3; диоксид циркония 1-6. Технический результат - разработка шихты для изготовления керамического материала, имеющего высокую твердость, вязкость разрушения и относительно невысокую плотность при обеспечении относительно низкой температуры спекания шихты. 1 з.п. ф-лы, 5 пр.

Изобретение относится к технологии пористых керамических материалов конструкционного назначения и может быть использовано для изготовления изделий, сочетающих высокие показатели по пористости и прочности при невысокой теплопроводности (теплоизоляция, фильтры для очистки жидких и газовых сред, элементы комбинированной ударопрочной защиты, матрицы для получения композиционных материалов методом пропитки). Исходный сплав алюминия, содержащий 0,6-10 мас.% магния, обрабатывают водным раствором NaOH. Маточный раствор подвергают гидролизу путем добавления воды с температурой 80-95°C при одновременном воздействии ультразвука (22-45 кГц, 10-35 сек), выделяют осадок, который промывают при pH=7,5-10, высушивают и термообрабатывают на воздухе при температуре 1380-1400°C в течение 60-90 минут. Из полученного продукта готовят шихту, прессуют заготовки при 50-200 МПа. Спекание заготовок проводят на воздухе путем нагрева со скоростью 300-400°C/час до температуры 1410-1420°C, затем до температуры 1510-1550°C со скоростью 80-100°C/час с последующей изотермической выдержкой в течение 30-50 минут. Керамика состава α-Al2O3 (80-94 об.%) и Al2MgO4 (6-20 об.%) имеет общую пористость 37-50%, открытую пористость 30-38%, прочность при изгибе 15-60 МПа, коэффициент теплопроводности на воздухе при 1000°C 2,0-2,5 Вт/м·К. Технический результат изобретения - увеличение открытой пористости материала при сохранении достаточной прочности. 2 з.п. ф-лы, 3 пр., 1 табл.

Изобретение относится к технологиям получения керамических материалов, в частности к способам легирования керамики, и может быть использовано в области электротехники и машиностроения для изготовления высокопрочных керамических изделий. Техническим результатом изобретения является повышение прочности и снижение рассеяния прочности алюмооксидной керамики. Способ легирования алюмооксидной керамики включает получение заготовки из шликера, удаление технологической связки и обжиг. Согласно изобретению после удаления технологической связки заготовку пропитывают водным раствором нитрата цирконила ZrO(NO3)2×2Н2О, затем осуществляют ее нагрев с повышением температуры до 400°С. Последующий обжиг выполняют с равномерным нагревом заготовки до температуры 1600-1650оС в течение 12 часов, выдерживают при максимальной температуре до 1 часа и осуществляют равномерное охлаждение заготовки до комнатной температуры в течение 3-4 часов. 1 ил., 1 табл.
Наверх