Тепловой химический источник тока

Изобретение относится к области электротехники, к области резервных химических источников тока на твердом теле и может быть использовано для изготовления теплового источника тока с ионной проводимостью. Согласно изобретению тепловой источник тока содержит блок электрохимических элементов (ЭХЭ) в корпусе с теплоизоляцией, каждый из которых содержит последовательно чередующиеся твердые слои анода, катода, электролита, нагревательных элементов в расчетном количестве, снабженных теплоизоляцией. Блок электрохимических элементов жестко фиксирован на крышке цилиндрического корпуса вдоль вертикальной оси его, в качестве основных нагревательных элементов между слоями электрохимических элементов установлены пиронагреватели, которые выполнены из материала на основе смеси мелкодисперсного титанового и алюминиевого порошков и/или их соли, которые соединены с системой активации из электровоспламенителей для инициирования ЭХЭ. Дополнительно по внешнему контуру блока электрохимических элементов выполнен пиронагревательный элемент в виде втулки из материала основных нагревательных элементов, теплоизоляция блока электрохимических элементов выполнена составной из слоев мелкозернистого кварцевого волокна и нетканого волокнистого пресс-материала, пиротехническая втулка внутри и снаружи снабжена указанными слоями теплоизоляции, а на общем основании, жестко фиксированном на крышке корпуса, смонтированы электровоспламенители для активации и индикатор рабочего состояния, по торцам блока ЭХЭ установлены по одному пассивному ЭХЭ, электрически не соединенному с другими ЭХЭ. Техническим результатом является обеспечение требований по массово-габаритным ограничениям, повышения ресурса работы за счет стабилизации теплового режима, энергоемкости при одновременном сохранении электрохимических характеристик. 1 ил., 1 табл.

 

Предлагаемое изобретение относится к электротехнике, к области резервных химических источников тока на твердом теле и может быть использовано для изготовления теплового источника тока с ионной проводимостью.

Известно устройство теплового источника тока, содержащего блок электрохимических элементов, каждый из которых снабжен твердыми слоями анода, катода, электролита, с теплонагревательными элементами между ними, ограниченными с внешней стороны общим корпусом (патент РФ №1833080, МПК H01M 6/20, публ. 05.10.1995 г., БИ 28/95).

Недостатками данного устройства являются недостаточно высокие показатели энергоемкости и непродолжительные периоды работы и гарантийного срока хранения.

Известно в качестве наиболее близкого по технической сущности к заявляемому устройство теплового источника тока (ТХИТ) (патент РФ №2091918, МПК H01M 6/36, публ. 27.09.1997 г., БИ №27/97), содержащего блок электрохимических элементов, каждый из которых снабжен твердыми слоями анода, катода, электролита, нагревательных элементов, ограниченными с внешней стороны общим корпусом с теплоизоляцией.

К недостаткам прототипа относятся невысокие показатели энергоемкости, невысокий ресурс работы и уровень электрохимических характеристик теплового химического источника тока (ТХИТ).

Задачей авторов предлагаемого изобретения является разработка ТХИТ, обеспечивающего требования по массово-габаритным ограничениям с повышенным ресурсом работы, повышенной энергоемкостью при одновременном сохранении электрохимических характеристик.

Новый технический результат, получаемый при использовании предлагаемого изобретения, заключается в обеспечении требований по массово-габаритным ограничениям, повышении ресурса работы за счет стабилизации теплового режима и энергоемкости при одновременном сохранении электрохимических характеристик.

Указанные задача и новый технический результат достигаются тем, что в отличие

от известной конструкции теплового источника тока, содержащего блок электрохимических элементов в корпусе с теплоизоляцией, каждый из которых снабжен твердыми слоями анода, катода, электролита, нагревательных элементов, ограниченными с внешней стороны общим корпусом с крышкой, в предлагаемой конструкцией, блок электрохимических элементов жестко фиксирован на крышке корпуса вдоль вертикальной оси его, в качестве основных нагревательных элементов между слоями электрохимических элементов установлены пиронагреватели, которые выполнены из материала на основе смеси мелкодисперсного титанового и алюминиевого порошков, дополнительно по внешнему контуру блока электрохимических элементов выполнен пиронагревательный элемент в виде втулки из материала основных нагревательных элементов, теплоизоляция теплового источника тока выполнена составной из слоев мелкозернистого кварцевого волокна и нетканого теплостойкого волокнистого пресс-материала, пиротехническая втулка расположена между указанными слоями теплоизоляции, а на общем основании, жестко фиксированном на крышке корпуса, смонтированы электровоспламенители для активации ТХИТ и индикатор рабочего состояния, по торцам блока ЭХЭ установлены по одному пассивному ЭХЭ, электрически не соединенному с другими ЭХЭ.

Предлагаемая конструкция ТХИТ поясняется следующим образом.

На чертеже представлен вид предлагаемого теплового химического источника тока, где 1 - цилиндрический корпус, выполненный преимущественно из стали, на котором жестко фиксирована, например сваркой, крышка 2, ограничивающая собой герметичное пространство ТХИТ. Вдоль вертикальной оси цилиндрического корпуса в герметичном пространстве источника установлен и жестко фиксирован блок электрохимических элементов (ЭХЭ) 3. Блок электрохимических элементов состоит из расчетного количества чередующихся последовательно собственно электрохимических элементов и нагревательных элементов. Каждый ЭХЭ представляет собой пресс-пакет из твердых слоев анода, электролита и катода. Для нагрева блока ЭХЭ до рабочей температуры и обеспечения электрической связи между ними установлены пиронагреватели, которые выполнены из материала на основе смеси мелкодисперсного титанового и алюминиевого порошков. Каждый слой пиронагревательного элемента представляет собой запрессованный в металлическую оболочку тепловыделяющий пиротехнический состав. Система пиронагевательных элементов задействуется при срабатывании электровоспламенителей (ЭВ) 4 и пиротехнических соединительных элементов 6. Для сохранения необходимой рабочей температуры в блоке ЭХЭ в период работы ТХИТ по внутренним поверхностям цилиндрического корпуса 1 и крышки 2 установлены в качестве составной теплоизоляции теплоизоляционные элементы 8, 9, 10, при этом крышка 2 электро- и теплоизолирована теплоизоляционным материалом 11, 12.

Корпус 1 и крышка 2 выполнены из стали с толщиной стенок от 0,5 мм до 1 мм, что, как подтверждено экспериментально, оптимально для обеспечения достаточной механической прочности ТХИТ и для соблюдения заданных ограничений по массе.

Блок ЭХЭ теплоизолирован со всех сторон теплоизоляционным материалом, состоящим из слоев мелкозернистого кварцевого волокна, имеющим низкий коэффициент теплопроводности.

В тепловом источнике на общем основании 5 установлены элементы системы активации с электровоспламенителями (ЭВ) 4 и индикатор контрля 7 рабочего состояния ТХИТ. Для обеспечения требуемого времени работы ТИТ по торцам блока ЭХЭ установлены по одному пассивному ЭХЭ (электрически не соединенному с другими ЭХЭ), что способствует стабилизации теплового режима по оси блока ЭХЭ.

Предлагаемое устройство работает следующим образом. При подаче импульса тока на электрический мостик ЭВ от постороннего источника тока срабатывает ЭВ и дает форс пламени на систему пиротехнических соединительных элементов 6, выполненных в виде пиротехнической ленты, при горении которых воспламеняются пиронагревательные элементы, установленные между слоями ЭХЭ. При достижении рабочей температуры электролит становится ионопроводящим, а на ЭХЭ возникает разность потенциалов, после нарастания которой до требуемой величины ТХИТ готов к работе.

Высокие температуры ионных расплавов, использование энергоемких электрохимических пар (LiB-NiCl2), как это было экспериментально показано, обеспечивает в предлагаемом тепловом химическом источнике тока высокие удельные показатели - рабочие напряжения (2,1-2,6 В на один элемент) и значительные плотности тока разряда (до 0,5 А/см2 в импульсном режиме), что значительно превышает показатели прототипа.

Таким образом, при использовании предлагаемого теплового источника тока обеспечиваются требования по массово-габаритным ограничениям, повышение ресурса работы и энергоемкости за счет стабилизации теплового режима при одновременном сохранении электрохимических характеристик.

Возможность промышленной реализации предлагаемого теплового химического источника тока подтверждается следующими примерами.

Пример 1. В лабораторных условиях предлагаемый ТХИТ был реализован в виде опытного образца теплового химического источника тока. Он представляет собой установленные по вертикальной оси в цилиндрическом корпусе 1 (см. чертеж), соединенном герметично аргонно-дуговой сваркой с крышкой 2 11 единиц ЭХЭ в составе блока ЭХЭ - 3. Корпус 1 и крышка 2 выполнены из нержавеющей стали 12Х18Н10Т ГОСТ 5632-72, толщина стенок 0,7 мм. Блок ЭХЭ крепится на крышке с помощью 3-х винтов М4-7Н. Необходимое рабочее напряжение теплового источника тока (ТИТ) обеспечивается путем последовательного соединения (набора в «столб») всего пакета ЭХЭ. В ТХИТ по торцам блока ЭХЭ установлены по одному пассивному ЭХЭ. Для нагрева ЭХЭ до рабочей температуры и обеспечения электрической связи между ЭХЭ установлены запрессованные в металлическую оболочку пиротехнические составы.

Для сохранения необходимой температуры в блоке ЭХЭ 3 и ограничения температуры корпуса 1 по его внутренним поверхностям установлены теплоизоляторы 8, 9, 10, выполненные из ТЗМК-20 ТУ 1-596-290-89, при этом крышка 2 дополнительно тепло- и электроизолирована слоями теплоизоляционных материалов 11, 12 («Картон -Н» 4682601.013-89 ТУ, слюда ССП ГОСТ 13750-88).

Пример 2. Для увеличения ресурса рабочего времени ТХИТ в качестве опытного образца реализовано предлагаемое устройство по условиям примера 1, в котором по боковой поверхности блока ЭХЭ установлен дополнительно пиронагревательный элемент в виде втулки 13, расположенной между двумя слоями теплоизоляции (внутреннего из «Картон-Н» и внешнего - из материала ТЗМК-20). Пиротехническая втулка служит аккумулятором тепла, что позволяет расширить интервал поддержания рабочей температуры в блоке ЭХЭ.

Результаты измерений сведены в таблицу 1.

Как показали примеры и данные таблицы 1, использование предлагаемого ТХИТ позволило обеспечить требования по массово-габаритным ограничениям, повысить ресурс работы и энергоемкость за счет стабилизации теплового режима при одновременном сохранении электрохимических характеристик.

Таблица 1
Примеры реализации Наименование показателей Ед.изм. Значение показателей предлагаемого ТХИТ Значение показателей ТХИТ прототипа Срок годности ТХИТ Примечание
1 2 3 4 5 6 7
Прототип ТХИТ Характеристики: Недостаточно высокие показатели энергоемкости, времени работы, массы, надежности
Ток А До 3,5 А
Напряжение В 21,0-30,0 В
Емкость А*с 277,0 17 лет
Удельная энергия Вт*ч/кг 6,1
Время работы с 106,0
Габариты мм ⌀47,5*70,2
Масса г 310,0
Предлагаемый ТХИТ Характеристики: Улучшение по характеристикам: время работы, снимаемая емкость, удельная энергия, масса, надежность, стабилизация теплового режима
Ток А До 3,5 А
Напряжение В 21,0-30,0 В
Емкость А*с 579,0
Удельная энергия Вт*ч/кг 17,5 17 лет
Время работы с 199,0
Габариты мм ⌀47,5*70,2
Масса г 230,0

Тепловой химический источник тока, содержащий блок электрохимических элементов (ЭХЭ) в корпусе с теплоизоляцией, каждый из которых содержит последовательно чередующиеся твердые слои анода, катода, электролита, нагревательных элементов в расчетном количестве, снабженных теплоизоляцией, отличающийся тем, что блок электрохимических элементов жестко фиксирован на крышке цилиндрического корпуса вдоль вертикальной оси его, в качестве основных нагревательных элементов между слоями электрохимических элементов установлены пиронагреватели, которые выполнены из материала на основе смеси мелкодисперсного титанового и алюминиевого порошков и/или их соли, которые соединены с системой активации из электровоспламенителей для инициирования ЭХЭ, дополнительно по внешнему контуру блока электрохимических элементов выполнен пиронагревательный элемент в виде втулки из материала основных нагревательных элементов, теплоизоляция блока электрохимических элементов выполнена составной из слоев мелкозернистого кварцевого волокна и нетканого волокнистого пресс-материала, пиротехническая втулка внутри и снаружи снабжена указанными слоями теплоизоляции, а на общем основании, жестко фиксированном на крышке корпуса, смонтированы электровоспламенители для активации и индикатор рабочего состояния, по торцам блока ЭХЭ установлены по одному пассивному ЭХЭ, электрически не соединенному с другими ЭХЭ.



 

Похожие патенты:

Изобретение относится к области электротехнической промышленности, в частности к электролитам для высокотемпературных химических источников тока. .

Изобретение относится к устройствам прямого преобразования химической энергии электродных пиротехнических составов в электрическую энергию, в частности к батареям высокотемпературных резервных источников электрического тока одноразового действия, предназначенных для работы в режиме ожидания.

Изобретение относится к области электротехнической промышленности, в частности к разработке расплавляемых электролитов для высокотемпературных тепловых химических источников тока.

Изобретение относится к пиротехническим резервным источникам электрического тока, принцип действия которых основан на преобразовании химической энергии в электрическую в гальванической ячейке, содержащей анод, сепаратор с электролитом и катод, а сам источник способен длительное время находиться в неактивированном режиме и вырабатывать электрическую энергию только после активации, достигается тем, что по электролитному материалу, находящемуся в закрытой камере, соединенной каналами с сепаратором гальванической ячейки, наносится тепловой удар от нагревателя, например пиротехнического состава, в результате чего электролитный материал, вскипая, разлагаясь, реагируя, распадаясь, выделяет жидкопарогазовую ионопроводящую субстанцию, которая, под действием возникающего в камере повышенного давления, быстро заполняет сепаратор и активирует гальваническую ячейку.

Изобретение относится к устройствам прямого преобразования химической энергии экзотермических композиций в электрическую энергию, в частности к высокотемпературным резервным источникам электрического тока одноразового действия.

Изобретение относится к пиротехническим резервным источникам электрического тока, принцип действия которых основан на преобразовании химической энергии в электрическую в гальванической ячейке, содержащей анод, сепаратор, электролит и катод, а сам источник способен длительное время находиться на активированном режиме и вырабатывать электрическую энергию только после активации.

Изобретение относится к области боеприпасов, а именно к электрическим взрывателям боеприпасов, и может быть использовано в производстве электрических взрывателей боеприпасов.

Изобретение относится к первичным резервным источникам тока одноразового действия и предназначено для автономного питания устройств энергозависимых объектов. .

Изобретение относится к области пиротехники и может быть использовано в качестве пиротехнического нагревателя (ПТН) в различных изделиях, где от используемого пиротехнического состава (ПТС) требуется выдача строго определенного количества тепла в заданный интервал времени при малом газовыделении.

Изобретение относится к устройствам для преобразования химической энергии экзотермических композиций в электрическую энергию, в частности к высокотемпературным резервным источникам тока одноразового действия, работающим в режиме ожидания и предназначенным для автоматического питания бортовой аппаратуры, приборов и устройств (мостики накапливания, пироэнергодатчики, микродвигатели, реле и т.д.), используемых в системах автоматики и объектов различного назначения (в том числе для включения систем пожаротушения, сигнализации, оповещения, блокировки и т.п.).

Изобретение относится к области электротехники, а именно к термоактивируемым химическим источникам тока (ТХИТ), и может быть использовано в источниках электропитания как средств управления, так и активного питания силовых электрических агрегатов

Изобретение относится к устройствам прямого преобразования химической энергии экзотермических композиций в электрическую энергию, в частности к высокотемпературным резервным источникам электрического тока одноразового действия, предназначенным для работы в режиме ожидания

Изобретение относится к области электротехнической промышленности, в частности к разработке расплавляемых электролитов для высокотемпературных тепловых химических источников тока
Изобретение относится к области энергетики, в частности к разработке составов, содержащих фторид, бромид, молибдат лития, при этом для расширения диапазона концентраций с низкой температурой плавления дополнительно введен вольфрамат лития при следующем соотношении компонентов, мас.%: фторид лития 6,34-7,03, бромид лития 76,28-79,61, вольфрамат лития 4,85-9,59, молибдат лития 4,47-11,84. Заявляемый состав обеспечивает работоспособность электролита для химического источника тока в диапазоне температур выше 447-451°С при сравнительно широкой области концентраций компонентов. 1 табл., 6 пр.
Изобретение относится к области электротехнической промышленности, в частности к разработке расплавляемых электролитов для химических источников тока на основе солей лития и калия. Расплавляемый электролит для химического источника тока, включающий метаванадат лития и соли калия, отличающийся тем, что в качестве солей калия содержит бромид и метаванадат, при следующем соотношении компонентов, мас.%: метаванадат лития 33,26…35,20, бромид калия 4,79…7,72, метаванадат калия 57,08…61,11. Снижение температуры и удельной энтальпии плавления расплава указанного электролита позволяет увеличить диапазон его использования в области температур 329-347°С, что позволяет снизить энергозатраты на приведение электролита в рабочее состояние. 1 пр., 1 табл.

Изобретение относится к области энергетики, в частности к разработке составов солей лития, которые могут быть использованы в качестве расплавляемых электролитов для химического источника тока. В целях расширения диапазона концентраций с низкой температурой плавления предложенный состав содержит в качестве соли лития вольфрамат лития при следующем отношении компонентов, мас.%: бромид лития 68,97…71,83; бромид калия 24,84…25,42; молибдат лития 0,47…5,06; вольфрамат лития 0,30…3,10. Предложенный состав обеспечивает повышение работоспособности электролита для химического источника тока в диапазоне температур выше 323-327°С при сравнительно широкой области концентраций используемых компонентов. 3 пр., 1 табл.

Изобретение относится к устройствам прямого преобразования химической энергии экзотермических композиций в электрическую энергию, в частности к высокотемпературным резервным источникам электрического тока одноразового действия, и может быть использовано, например, для автономного питания бортовой аппаратуры, приборов и устройств и т.п. Пиротехнический источник тока представляет собой батарею высокотемпературных гальванических элементов (ВГЭ), выполненных в виде набора многослойных пиротехнических зарядов с избытком окислителя в катоде и избытком горючего в аноде, разделенных сепаратором из асбеста, диспергированного в электролите, содержащем фториды металлов и диоксид циркония, соединенных последовательно, посредством токоотводов из металлической фольги, и связанных с торцевыми пиронагревателями и воспламенительной лентой. Оптимизация тепловых и электрохимических режимов окислительно-восстановительных процессов в ВГЭ обеспечивается заявленным качественным и количественным составом компонентов электродов и сепаратора, а также их оптимальной толщиной. Снижение времени выхода на рабочий режим и повышение длительности работы ВГЭ является техническим результатом заявленного изобретения. 2 ил.

Изобретение относится к устройствам прямого преобразования химической энергии экзотермических композиций в электрическую энергию, в частности к высокотемпературным резервным источникам электрического тока одноразового действия, предназначенным для работы в режиме ожидания - автономного задействования и питания бортовой аппаратуры, приборов и устройств, например в виде мостиков накаливания, пиротехнических энергодатчиков, микроэлектродвигателей, реле, и т.д., систем оповещения, автоматического пожаротушения, блокировки и т.п. В предложенном пиротехническом источнике электрического тока (ПИТ) толщины пластин анода, сепаратора и катода выполнены в соотношении 1:(1,2-1,3):(1,4-1,5) при следующем содержании компонентов в них, в мас.%: в аноде: цирконий 71-75, сплав или смесь фторидов металлов 20-26, асбест 3-5; в сепараторе: цирконий 24-30, барий хромовокислый 59-63, диоксид циркония 6-10, асбест 3-5; в катоде: цирконий 7-9, оксид меди 29-33, сплав или смесь фторидов металлов 47-50, диоксид циркония 7-10, асбест 3-5. Повышение надежности пиротехнического источника электрического тока, увеличение времени генерирования тока при уменьшении толщины элементарной ячейки, а также увеличение стабильности токовых характеристик является техническим результатом предложенного изобретения. 2 ил.

Заявленное изобретение относится к резервным источникам тока, а именно к тепловым химическим источникам тока (ТХИТ). Повышение надежности работы, исключение риска появления коротких замыканий между элементами активных масс электрохимических элементов (ЭХЭ), образующих блок устройства, является техническим результатом заявленного изобретения. Снаружи блока расположена составная теплоизоляция, выполненная из композиционного материала на основе силикатной композиции и слюды. Для выравнивания теплового режима в краевых ЭХЭ между внутренней поверхностью слоя электроизоляции и боковой поверхностью ЭХЭ установлены пластины, выполненные из материала, удельная теплоемкость которого не менее 0,11 кал/г·град, а между изоляцией и поверхностью поджигающих пиротехнических лент выполнены воздушные зазоры. 1 ил., 1 пр.

Изобретение относится к области электротехнической промышленности, в частности к разработке расплавляемых электролитов для химических источников тока на основе солей лития и калия. Расплавляемый электролит для химического источника тока, включающий фторид, метаванадат лития и другие соединения калия, отличающийся тем, что в качестве солей калия электролит содержит хлорид, бромид и метаванадат калия при следующем соотношении компонентов, мас.%: Фторид лития 1,06…1,30 Метаванадат лития 32,99…33,92 Хлорид калия 1,24…1,88 Бромид калия 5,58…6,58 Метаванадат калия 58,13…58,74 Заявляемый электролит имеет существенное преимущество по сравнению с известными аналогичными расплавами, поскольку на 36-42°C обеспечивает снижение температуры плавления, что позволяет снизить энергозатраты на приведение электролита в рабочее состояние и расширяет температурный диапазон использования электролита. 1 табл.
Наверх