Способ оценки реакции закладочного массива по результатам натурных наблюдений за оседаниями земной поверхности

Изобретение относится к горной промышленности и предназначено для количественной оценки натурных наблюдений геомеханической роли закладочного массива (ЗМ) при его взаимодействии с породными целиками (ПЦ) различного производственного назначения. Техническим результатом изобретения является снижение трудоемкости и стоимости работ, повышение достоверности результатов за счет учета геологических факторов и процессов взаимодействия закладки с ПЦ в натурных условиях, а также более корректное решение задачи управления процессами деформирования подрабатываемых породных массивов. Для этого проводят длительные инструментальные наблюдения за оседанием земной поверхности над отработанными участками шахтного поля с заложенными и незаложенными очистными камерами в аналогичных горно-геологических и горнотехнических условиях. Сразу после отработки продуктивных пластов с податливыми междукамерными ПЦ профильные маркшейдерские линии на земной поверхности оборудуют реперами. Дополнительно проводят лабораторные испытания породных образцов, у которых отношение высоты к диаметру составляет не менее 2, на ползучесть при сжатии при нагрузках выше предела длительной прочности породы с построением кривых ползучести в координатах «уровень нагружения - логарифм скорости вертикальных деформаций», а также на прочность с построением обобщенного паспорта прочности в координатах «горизонтальное напряжение - вертикальное напряжение». Реакцию ЗМ определяют по приведенной математической зависимости. 5 ил.

 

Изобретение относится к горной промышленности и может быть использовано для количественной оценки геомеханической роли закладочного массива при его взаимодействии с целиками различного производственного назначения.

При взаимодействии закладочного массива и целиков, когда целики, деформируясь с течением времени под действием горного давления, давят на уплотняющуюся закладку, со стороны закладочного массива на целики действует реактивное горизонтальное давление (реакция закладочного массива), в результате чего целики оказываются в объемном напряженном состоянии и обладают значительно большей несущей способностью по сравнению со случаем плоского или одноосного напряженного состояния.

Известны способы оценки давления в закладочной смеси, которое равно реакции закладки, заключающиеся в лабораторных испытаниях системы «цилиндрический породный образец-закладка» в жестких цилиндрических матрицах при различных значениях отношения высоты закладочного материала, заполняющего зазор между стенками матрицы и образцом к высоте образца (Блайт Е., Кларк И.Е. Приготовление и исследование свойств жесткой закладочной смеси для поддержания целиков // Разработка месторождений с закладкой. - М.: Мир, 1987; Пат. №2204716, МПК Е21С 39/00, заявка: 2001117810/03, заявл. 26.06.2001, опубл. 20.05.2003, Бюл. №14).

Указанные способы осуществляются на образцах породного и закладочного материалов и не учитывают длительное взаимодействие закладочного массива с породными целиками в натурных условиях рудников.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому техническому решению является способ оценки относительной реакции закладочного массива при его длительном взаимодействии с породами, вмещающими горную выработку (Пат. №2254465, РФ, МПК7: Е21С 39/00, G01N 3/12, G01N 33/24, заявка: 2004103768/03, заявл. 09.02.2004, опубл. 20.06.2005, Бюл. №17).

Способ включает проведение компрессионных испытаний системы «цилиндрический породный образец - закладочный материал» в жестких матрицах при различных значениях отношения высоты закладочного материала, заполняющего зазор между стенками жесткой цилиндрической матрицы и образцом, к высоте образца. Проводят испытания для построения обобщенного паспорта прочности породных образцов в координатах «горизонтальное напряжение - вертикальное напряжение». Проводят испытания породных образцов на ползучесть при сжатии при нагрузках выше предела длительной прочности породы с построением кривых ползучести в координатах «уровень нагружения - логарифм скорости вертикальных деформаций». Относительную реакцию закладочного массива определяют по формуле:

где - реактивное давление закладочного массива на породный образец;

- предел прочности породных образцов на одноосное сжатие;

σ1 - осевое сжимающее напряжение, действующее на образец, равное отношению вертикальной нагрузки на образец к площади его поперечного сечения;

Kε - отношение скорости вертикальных деформаций породного образца, окруженного закладочным материалом, к скорости вертикальных деформаций без закладки при одном и том же сжимающем осевом напряжении σ1;

α - константа породы, соответствующая коэффициенту увеличения прочности породного образца при действии на него не только осевого давления σ1, но и бокового давления σ2, определяемая из испытаний породных образцов на сжатие с построением паспорта прочности в координатах «боковое напряжение - осевое напряжение» как тангенс угла его наклона к горизонтальной оси;

β - константа породы, соответствующая коэффициенту увеличения скорости ползучести образца при увеличении уровня нагружения , определяемая из испытаний породных образцов на ползучесть при сжатии с построением графика «уровень нагружения - натуральный логарифм скорости деформаций lnε» как тангенс его наклона к горизонтальной оси.

Указанный способ не позволяет оценить влияние геологических факторов и процессы взаимодействия закладочного массива с породными целиками, развивающиеся во времени, на величину реакции закладки и потому является весьма приближенным.

Технический результат предлагаемого изобретения заключается в значительном снижении трудоемкости и стоимости работ, а также повышении достоверности результатов за счет учета геологических факторов и процессов взаимодействия закладки с породными целиками в натурных условиях.

Указанный технический результат достигается тем, что в способе оценки реакции закладочного массива по результатам натурных наблюдений за оседаниями земной поверхности, включающем проведение длительных инструментальных наблюдений за оседанием земной поверхности над отработанными участками шахтного поля с заложенными и незаложенными очистными камерами в аналогичных горно-геологических и горнотехнических условиях, отличающемся тем, что профильные маркшейдерские линии на земной поверхности оборудуют реперами сразу после отработки продуктивных пластов с податливыми (деформирующимися во времени) междукамерными целиками, дополнительно проводят лабораторные испытания породных образцов, у которых отношение высоты к диаметру составляет не менее 2, на ползучесть при сжатии при нагрузках выше предела длительной прочности породы с построением кривых ползучести в координатах «уровень нагружения - логарифм скорости вертикальных деформаций», а также на прочность с построением обобщенного паспорта прочности в координатах «горизонтальное напряжение - вертикальное напряжение», а реакцию закладочного массива определяют по формуле:

,

где q - реактивное давление закладочного массива на междукамерный целик, МПа;

- прочность породы, слагающей целик, на одноосное сжатие, МПа;

γ - средний объемный вес вышележащих пород, МН/м3;

Н - глубина разработки, м;

a - ширина очистной камеры, м;

b - ширина междукамерного целика, м;

А - коэффициент заполнения камер закладкой, равной отношению высоты закладочного массива к высоте камеры;

α - константа породы, слагающей целик, соответствующая коэффициенту увеличения прочности породного образца при действии на него не только осевого давления σ1, но и бокового давления σ2, определяемая из испытаний породных образцов на сжатие с построением паспорта прочности в координатах «боковое напряжение - осевое напряжение» как тангенс угла его наклона к горизонтальной оси;

β - константа породы, слагающей целик, соответствующая коэффициенту скорости ползучести образца при увеличении уровня его нагружения, определяемая из испытаний породных образцов на ползучесть при одноосном сжатии с построением графика «уровень нагружения - натуральный логарифм» скорости деформаций как тангенс его наклона к горизонтальной оси;

- скорость оседаний земной поверхности при незаложенных камерах, мм/сут;

- скорость оседаний земной поверхности при заложенных камерах, мм/сут;

- отношение скорости вертикальных оседаний земной поверхности при заложенных камерах к скорости оседаний земной поверхности при незаложенных камерах при одних и тех же значениях Н, а, b.

Сущность изобретения поясняется чертежами, где:

на фиг.2 - кривые вертикальных оседаний земной поверхности в зависимости от времени, прошедшего с «момента» отработки продуктивного пласта над незаложенными и заложенными участками по данным маркшейдерских наблюдений;

на фиг.4 - обобщенный паспорт прочности породы в координатах «боковое напряжение-вертикальное напряжение»;

на фиг.5 - график зависимости натурального логарифма скорости ползучести на установившейся стадии от степени нагружения образца ;

на фиг.1 - проектная схема отработки пластов АБ и В с одинаковыми параметрами;

на фиг.3 - схема деформирования и разрушения целиков на пластах АБ и В (по результатам наблюдений).

На чертежах: 1 - кривые вертикальных оседаний земной поверхности в зависимости от времени, прошедшего с «момента» отработки продуктивного пласта над незаложенными участком по данным маркшейдерских наблюдений; 2 - кривые вертикальных оседаний земной поверхности в зависимости от времени, прошедшего с «момента» отработки продуктивного пласта над заложенным участком по данным маркшейдерских наблюдений; 3 - криволинейная огибающая кругов Мора; на фиг.4 - линейная аппроксимация криволинейной огибающей кругов Мора, на фиг.5 - график зависимости натурального логарифма скорости продольных деформаций породных образцов на стадии установившейся ползучести от уровня их нагружения .

Способ оценки реакции закладочного массива по результатам натурных наблюдений за оседаниями земной поверхности иллюстрируется на примере Верхнекамского месторождения калийных и калийно-магниевых солей.

В течение 9 лет проводились маркшейдерские наблюдения за оседаниями земной поверхности над отработанными в условиях Первого Соликамского рудника блоками 115 и 77, расположенными рядом в юго-восточной части шахтного поля. В обоих блоках отрабатывались пласты В (карналлитовый) и АБ (сильвинитовый) на глубине Н=300-310 м, с одинаковыми параметрами (фиг.1).

В блоке 77 очистные камеры на карналлитовом пласте В через t'=l,5 года (фиг.2) после их отработки были заложены сухой закладкой (влажность W=7-8%) с полнотой заполнения камер А=0,70.

Визуальными наблюдениями в незаложенных камерах 115 блока было установлено, что междукамерные целики на пласте АБ практически не деформируются, а на карналлитовом пласте В деформируются и разрушаются (фиг.3), т.е. краевые части целиков разрушены и нагрузку не несут.

На оседания земной поверхности преобладающее влияние оказывает отработанный карналлитовый пласт. Скорость оседаний земной поверхности примерно равна скорости оседаний междукамерных целиков на карналлитовом пласте в активной стадии их деформирования.

По результатам маркшейдерских измерений построены графики 1, 2 (фиг.2), по которым установлено, что Тогда

Для лабораторных испытаний применяли максимально схожие между собой породные карналлитовые «образцы-близнецы», с отношением высоты h образцов к их диаметру d, равным двум .

Проводили испытания породных образцов карналлита на сжатие в стабилометре с построением обобщенного паспорта прочности в координатах «горизонтальное напряжение σ2 - вертикальное напряжение σ1» и по полученным данным построили криволинейную огибающую кругов Мора 1 и ее линейную аппроксимацию 2 (фиг.4).

По линейной аппроксимации паспорта прочности как тангенс угла наклона прямой к горизонтальной оси координат определяли константу α. Получили α=4,7, МПа.

Затем проводили испытания породных образцов на ползучесть при сжатии осевым давлением σ1 от σ до с построением графика зависимости натурального логарифма скорости ползучести на установившейся стадии от степени нагружения образца (фиг.5), по которому как тангенс угла наклона прямой к горизонтальной оси определяли константу породы β, характеризующую степень увеличения скорости установившейся ползучести при увеличении уровня нагружения образца. Получим β=14,66.

Оценим численно значение q реакции закладки на целики при следующих исходных данных: A=0,7, γ=0,021 МН/м3, H=300 м, a=8 м, в=19 м, МПа, α=4,7; β=14,66.

Подставив эти значения в заявляемую расчетную формулу, получим q=0,599 МПа≈0,6 МПа.

Использование предлагаемого способа оценки реакции закладочного массива при его длительном взаимодействии с породами, слагающими междукамерные целики, позволяет оценить несущую способность целиков различного назначения при разработке месторождений с закладкой в различных горно-геологических и горнотехнических условиях, позволяет более корректно решать задачи управления процессами деформирования подрабатываемых породных массивов.

Способ оценки реакции закладочного массива по результатам натурных наблюдений за оседаниями земной поверхности, включающий проведение длительных инструментальных наблюдений за оседанием земной поверхности над отработанными участками шахтного поля с заложенными и незаложенными очистными камерами в аналогичных горно-геологических и горно-технических условиях, отличающийся тем, что профильные маркшейдерские линии на земной поверхности оборудуют реперами сразу после отработки продуктивных пластов с податливыми междукамерными целиками, дополнительно проводят лабораторные испытания породных образцов, у которых отношение высоты к диаметру составляет не менее 2, на ползучесть при сжатии при нагрузках выше предела длительной прочности породы с построением кривых ползучести в координатах «уровень нагружения - логарифм скорости вертикальных деформаций», а также на прочность с построением обобщенного паспорта прочности в координатах «горизонтальное напряжение - вертикальное напряжение», а реакцию закладочного массива определяют по формуле
,
где q - реактивное давление закладочного массива на междукамерный целик, МПа;
- прочность породы, слагающей целик на одноосное сжатие, МПа;
γ - средний объемный вес вышележащих пород, МН/м;
Н - глубина разработки, м;
а - ширина очистной камеры, м;
b - ширина междукамерного целика, м;
А - коэффициент заполнения камер закладкой, равной отношению высоты закладочного массива к высоте камеры;
α - константа породы, слагающей целик, соответствующая коэффициенту увеличения прочности породного образца при действии на него не только осевого давления σ1, но и бокового давления σ2, определяемый из испытаний породных образцов на сжатие с построением паспорта прочности в координатах «боковое напряжение - осевое напряжение» как тангенс угла его наклона к горизонтальной оси;
β - константа породы, слагающей целик, соответствующая коэффициенту скорости ползучести образца при увеличении уровня его нагружения, определяемая из испытаний породных образцов на ползучесть при одноосном сжатии с построением графика «уровень нагружения - натуральный логарифм» скорости деформаций как тангенс его наклона к горизонтальной оси;
- скорость оседаний земной поверхности при незаложенных камерах, мм/сут;
- скорость оседаний земной поверхности при заложенных камерах, мм/сут;
- отношение скорости вертикальных оседаний земной поверхности при заложенных камерах к скорости оседаний земной поверхности при незаложенных камерах при одних и тех же значениях Н, а, b.



 

Похожие патенты:

Изобретение относится к области проектирования и строительства. .

Изобретение относится к конструкции лизиметрической установки для взятия проб почвенных растворов. .

Изобретение относится к сельскому хозяйству. .
Изобретение относится к сельскому хозяйству, в частности к плодоводству. .

Изобретение относится к сельскохозяйственному производству, в частности к устройствам для определения сложения почвы и ее твердости. .

Изобретение относится к испытательной технике и предназначено для исследования физико-механических свойств образцов искусственных материалов типа бетонов, грунтов, дорожных покрытий, эквивалентных материалов.

Изобретение относится к способу определения среднего содержания золота в рудных телах. .

Изобретение относится к пищевой промышленности. .

Изобретение относится к испытательной технике, к испытаниям на прочность. .

Изобретение относится к исследованию прочностных свойств тончайших пленочных материалов. .

Изобретение относится к испытанию на механическую нагрузку трубчатых образцов. .

Изобретение относится к области исследования и экспертизы пожаров и может быть использовано для выявления зон термических поражений при поисках очага пожара путем определения на месте пожара степени термического поражения участков обгоревшей электропроводки или иных проволочных изделий, изготовленных методом холодной деформации, при этом определяемым физическим параметром является усилие изгиба проволоки, которое измеряют в различных точках, а зону наибольших термических поражений выявляют по экстремально низким значениям данного параметра.

Изобретение относится к горному делу и может быть использовано для определения предела длительной прочности горных пород на образцах. .

Изобретение относится к испытательной технике. .

Изобретение относится к технике испытания конструкционных материалов. .

Изобретение относится к контрольно-испытательной технике и может быть использовано при испытании крупногабаритной трубопроводной арматуры высоким давлением. .

Изобретение относится к горному делу и предназначено для определения напряженного состояния горной породы в массиве. .
Наверх