Способ получения п-терфенил-2',5'-дикарбоновой кислоты

Изобретение относится к усовершенствованному способу получения п-терфенил-2',5'-дикарбоновой кислоты путем алкилирования п-ксилола алкилирующим агентом циклогексанолом в присутствии катализатора - серной кислоты с последующим дегидрированием полученного 2,5-дициклогексил-п-ксилола в жидкой фазе при атмосферном давлении и температуре 260-290°С на алюмопалладиевых катализаторах, с выделением при охлаждении 2',5'-диметил-п-терфенила и последующим окислением его в растворе ледяной уксусной кислоты кислородом при повышенной температуре в присутствии растворимого кобальт-марганец-бромного катализатора и выделения после охлаждения из реакционной смеси кристаллов п-терфенил-2',5'-дикарбоновой кислоты, причем алкилирование проводят при молярном соотношении п-ксилола, циклогексанола и серной кислоты 2-5: 2-5: 2-4 и температуре 0-5°С при введении первой половины циклогексанола с повышением температуры до 10-20°С до окончания процесса алкилирования, а окисление 2',5'-диметил-п-терфенила осуществляют при 105-110°С. Способ позволяет увеличить выход ценного мономера п-терфенил-2',5'-дикарбоновой кислоты в несколько раз.

 

Изобретение относится к способу получения п-терфенил-2',5'-дикарбоновой кислоты, являющейся ценным мономером для получения термостойких жидкокристаллических полимеров.

Известным и близким к предлагаемому является способ получения п-терфенил-2',5'-дикарбоновой кислоты путем алкилирования п-ксилола алкилирующим агентом циклогексанолом при молярном соотношении п-ксилола, циклогексанола и серной кислоты 2-5: 1: 2-4 и температуре 0-5°С в присутствии катализатора - серной кислоты с последующим дегидрированием полученного 2,5-дициклогексил-п-ксилола в жидкой фазе при атмосферном давлении и температуре 260-290°С на алюмоплатиновых или алюмопалладиевых катализаторах, с выделением при охлаждении 2',5'-диметил-п-терфенила и последующем окислении его в растворе ледяной уксусной кислоты кислородом при температуре 95°С в присутствии растворимого кобальт-марганец-бромного катализатора в течение 4-5 часов до полного окисления. После охлаждения из реакционной смеси отделяют выпавшие кристаллы п-терфенил-2',5'-дикарбоновой кислоты (Кузнецова Е.А. Синтез терфенила и его производных на основе нефтехимического сырья. Диссертация на соискание ученой степени кандидата химических наук: 05.17.04. Ярославль, ЯГТУ, 2004 г., страницы 84-104).

Однако выход продукта, получаемого данным способом, очень низок и составляет порядка 10% от загружаемого сырья.

Технической задачей данного изобретения является повышение выхода продукта.

Данная техническая задача решается использованием способа получения п-терфенил-2',5'-дикарбоновой кислоты путем алкилирования п-ксилола алкилирующим агентом циклогексанолом в присутствии катализатора - серной кислоты с последующим дегидрированием полученного 2,5-дициклогексил-п-ксилола в жидкой фазе при атмосферном давлении и температуре 260-290°С на алюмопалладиевых катализаторах, с выделением при охлаждении 2',5'-диметил-п-терфенила и последующим окислением его в растворе ледяной уксусной кислоты кислородом при повышенной температуре в присутствии растворимого кобальт-марганец-бромного катализатора до полного окисления и выделения после охлаждения из реакционной смеси кристаллов п-терфенил-2',5'-дикарбоновой кислоты, при этом алкилирование проводят при молярном соотношении п-ксилола, циклогексанола и серной кислоты 2-5: 2-5: 2-4 и температуре 0-5°С при введении первой половины циклогексанола и повышением температуры до 10-20°С до окончания процесса алкилирования, а окисление 2',5'-диметил-п-терфенила осуществляют при 105-110°С.

Пример 1.

Алкилирование. К смеси п-ксилола 212,4 г (2 моль) и серной кислоты 98% 196 г (2 моль) при начальной температуре 0°С при перемешивании по каплям в течение часа добавляют половину циклогексанола 100,2 г (1 моль), затем температуру реакционной массы поднимают до 10°С, докапывают в течение часа остальную половину циклогексанола 100,2 г (1 моль) и массу выдерживают при перемешивании в течение еще одного часа. Затем отделяют углеводородный слой, промывают его водой, 10%-ным раствора гидроксида натрия и снова водой до нейтральной реакции, сушат хлористым кальцием и фракционируют под вакуумом до выпадения в осадок 162 г 2,5-дициклогексил-п-ксилола.

Дегидрирование. Полученный 2,5-дициклогексил-п-ксилол подвергают дегидрированию в присутствии 10 г 2%-ного палладия на окиси алюминия (катализатор КПГ) при 260-290°С в течение примерно трех часов до выделения теоретически высчитанного количества водорода. Отфильтровывают горячий катализат от катализатора, охлаждают и экстрагируют бензолом 152 г (0,588 моль) 2',5'-диметил-п-терфенила.

Окисление. Кристаллы 2',5'-диметил-п-терфенила растворяют в ледяной уксусной кислоте, в присутствии растворимого кобальт-марганец-бромного катализатора через раствор пропускают кислород при температуре 105-110°С в течение примерно 4 часов до полного окисления. После охлаждения из реакционной смеси отделяют выпавшие кристаллы 112 г (0,350 моль) п-терфенил-2',5'-дикарбоновой кислоты. Выход: 35%.

Пример 2.

Алкилирование. К смеси п-ксилола 531 г (5 моль) и серной кислоты 98% 392 г (4 моль) при начальной температуре 5°С при перемешивании по каплям в течение часа добавляют половину циклогексанола 100,2 г (1 моль), затем температуру реакционной массы поднимают до 20°С, докапывают в течение часа остальную половину циклогексанола 100,2 г (1 моль) и массу выдерживают при перемешивании в течение еще получаса. Затем отделяют углеводородный слой, промывают его водой, 10%-ным раствором гидроксида натрия и снова водой до нейтральной реакции, сушат хлористым кальцием и фракционируют под вакуумом до выпадения в осадок 135 г (0,50 моль) 2,5-дициклогексил-п-ксилола.

Дегидрирование. Полученный 2,5-дициклогексил-п-ксилол подвергают дегидрированию в присутствии 10 г 2%-ного палладия на окиси алюминия (катализатор МА-15) при 260-290°С в течение примерно трех часов до выделения теоретически высчитанного количества водорода. Отфильтровывают горячий катализат от катализатора, охлаждают и экстрагируют бензолом 125 г (0,485 моль) 2',5'-диметил-п-терфенила.

Окисление. Кристаллы 2',5'-диметил-п-терфенила растворяют в ледяной уксусной кислоте, в присутствии растворимого кобальт-марганец-бромного катализатора через раствор пропускают кислород при температуре 105-110°С в течение примерно 4 часов до полного окисления. После охлаждения из реакционной смеси отделяют выпавшие кристаллы 89,5 г (0,280 моль) п-терфенил-2',5'-дикарбоновой кислоты. Выход: 28%.

Пример 3.

Алкилирование. К смеси п-ксилола 318,6 г (3 моль) и серной кислоты 98% 294 г (3 моль) при начальной температуре 5°С при перемешивании по каплям в течение часа добавляют половину циклогексанола 250,05 г (2,5 моль), затем температуру реакционной массы поднимают до 20°С, докапывают в течение часа остальную половину циклогексанола 250 г (2,5 моль) и массу выдерживают при перемешивании в течение еще получаса. Затем отделяют углеводородный слой, промывают его водой, 10%-ным раствором гидроксида натрия и снова водой до нейтральной реакции, сушат хлористым кальцием и фракционируют под вакуумом до выпадения в осадок 438,75 г 2,5-дициклогексил-п-ксилола.

Дегидрирование. Полученный 2,5-дициклогексил-п-ксилол подвергают дегидрированию в присутствии 10 г 2%-ного палладия на окиси алюминия (катализатор МА-15) при 260-290°С в течение примерно трех часов до выделения теоретически высчитанного количества водорода. Отфильтровывают горячий катализат от катализатора, охлаждают и экстрагируют бензолом 410,9 г 2',5'-диметил-п-терфенила.

Окисление. Кристаллы 2',5'-диметил-п-терфенила растворяют в ледяной уксусной кислоте, в присутствии растворимого кобальт-марганец-бромного катализатора через раствор пропускают кислород при температуре 105-110°С в течение примерно 4 часов до полного окисления. После охлаждения из реакционной смеси отделяют выпавшие кристаллы 318 г п-терфенил-2',5'-дикарбоновой кислоты.

Выход: 40%.

Выход продукта по сравнению с прототипом повысился в четыре раза.

Способ получения п-терфенил-2',5'-дикарбоновой кислоты путем алкилирования п-ксилола алкилирующим агентом циклогексанолом в присутствии катализатора - серной кислоты с последующим дегидрированием полученного 2,5-дициклогексил-п-ксилола в жидкой фазе при атмосферном давлении и температуре 260-290°С на алюмопалладиевых катализаторах, с выделением при охлаждении 2',5'-диметил-п-терфенила и последующим окислением его в растворе ледяной уксусной кислоты кислородом при повышенной температуре в присутствии растворимого кобальт-марганец-бромного катализатора и выделения после охлаждения из реакционной смеси кристаллов п-терфенил-2',5'-дикарбоновой кислоты, отличающийся тем, что алкилирование проводят при молярном соотношении п-ксилола, циклогексанола и серной кислоты 2-5: 2-5: 2-4 и температуре 0-5°С при введении первой половины циклогексанола с повышением температуры до 10-20°С до окончания процесса алкилирования, а окисление 2',5'-диметил-п-терфенила осуществляют при 105-110°С.



 

Похожие патенты:

Изобретение относится к органическому синтезу, в частности к усовершенствованному способу получения внутримолекулярного диангидрида пиромеллитовой кислоты - ценного мономерного сырья для производства термостойких полиимидов, алкидных смол, эффективных пластификаторов, водорастворимых лаков, смазок, клеев и др., путем постадийного окисления дурола до пиромеллитовой кислоты кислородом в среде уксусной кислоты при повышенных температуре и давлении в присутствии солей тяжелых металлов и галоидных соединений, в частности брома, вводимого рассредоточенно на каждую стадию, термической ангидридизацией продуктов окисления в псевдокумоле и последующими очисткой горячей фильтрацией полученного раствора и кристаллизацией, в котором в качестве галоидных соединений используют галоидводородные кислоты Гк ряда HBr, HCl, HF в виде бинарных или тройных смесей (HBr+HCl), (HBr+HF), (HBr+HCl+HF) в соотношении Br:Cl:F, равном 1:(0,15-1,0):(0,01-0,5), и/или HBr, а в качестве металлов катализатора Мк - соли Mn, Со, Zn в виде ацетатов, бромидов, хлоридов или фторидов в соотношении по ионам металлов (Co+Mn):Zn, равном 1:(0,05-0,1) соответственно, при общем соотношении Мк:Гк=1:(1,2-3), при этом окисление осуществляют в 4 ступени в температурном интервале 140-220°С и при давлении 2,0-3,0 МПа таким образом, что температуру на каждой ступени повышают на 10-15°С, а давление снижают на 0,2-0,3 МПа до избыточного давления на 4-ой ступени, превышающего упругость паров реакционной массы не менее чем на 0,25 МПа, и при времени реакции на каждой ступени в пределах 20-60 минут, а очистку ПМДА осуществляют путем перекристаллизации в смешанном растворителе, состоящем из бензола и этилацетата.

Изобретение относится к новьм ретиноидным соединениям общей формулы I, II, III, IV с ретиноидной отрицательной гормональной биологической активностью и/или подобной активности антангониста ретиноидов, композиции на их основе, способу определения антагонистов ретиноидных гормонов,способу лечения патологического состояния у млекопитающего, восприимчевого к обработке антагонистом ретиноида или отрицательным гормоном путем введения соединения I или II.

Изобретение относится к новым триарильным соединениям формул Iа и Ib: или их солям, где в формуле Ia W обозначает N или C-CO-R, где R обозначает ОН, OC1-С6алкил или NR3R4, где R3 и R4 - Н или C1-С6алкил, или в формуле Ib Az обозначает имидазопиридин и в обеих формулах Ia и Ib R1 обозначает C1-C4алкил, R2 обозначает фенильный фрагмент или 2,5-циклогексадиен-3,4-илидин-1-иловый фрагмент.
Изобретение относится к области выделения 2,5-бифенилдикарбоновой кислоты из продуктов окисления 2,5-диметилбифенила. .

Изобретение относится к способу получения мономера, в частности 2,5-бифенилдикарбоновой (фенилтерефталевой) кислоты, который может быть использован совместно с другими ароматическими кислотами и диолами для производства термотропных жидкокристалических полиэфиров (ТЖКП) промышленного назначения.

Изобретение относится к химической технологии, а именно к способам получения монохлоруксусной кислоты (МХУК), используемой в производствах карбоксиметилцеллюлозы, фармацевтических препаратов, пестицидов, этилендиаминтетрауксусной кислоты.

Изобретение относится к усовершенствованному способу получения твердого содержащего диформиат натрия состава с содержанием муравьиной кислоты не менее 35 мас.% от общей массы содержащего диформиат натрия состава, в котором а) обеспечивают поток муравьиной кислоты с содержанием муравьиной кислоты не менее 74 мас.%; b) поток муравьиной кислоты с этапа а) вместе с содержащими формиат натрия потоками с этапа f) и с этапа h) подают на этап кристаллизации, где получают, при повышенной температуре, водный раствор с молярным соотношением HCOOH:Na[HCOO] более чем 1,5:1 и молярным соотношением НСООН:Н2О, составляющим по меньшей мере 1,1:1; с) на этапе кристаллизации проводят кристаллизацию водного раствора с этапа b) с получением потока, содержащего твердую фазу и маточный раствор; d) полученный поток с этапа с) подают на этап разделения, на котором твердую фазу отделяют от маточного раствора, причем получают поток, содержащий диформиат натрия, и поток, содержащий маточный раствор; е) разделяют поток, содержащий маточный раствор с этапа d), на две части; f) одну часть потока с этапа е) в виде доли (А) возвращают на этап b); g) другую часть потока с этапа е) в виде доли (В) вместе с потоком, включающим основание, содержащее натрий, подают на этап нейтрализации, получая при этом смесь, содержащую формиат натрия, и причем доли маточного раствора (А) и (В) дополняют друг друга до 100 мас.%, а массовое соотношение доли (А) маточного раствора и доли (В) находится в пределах от 20:1 до 1:10; и h) подают с этапа g) и необязательно с этапа h) смесь, содержащую формиат натрия, при необходимости после изъятия его части, в виде потока на этап концентрирования, на котором выводят часть воды, содержавшейся в этом потоке, причем после отделения части воды получают поток, содержащий формиат натрия, который непосредственно возвращают на этап b) либо кристаллизуют на втором этапе кристаллизации и разделения, а полученную при этом жидкую фазу подают в виде потока на этап концентрирования h), а твердую фазу подают в виде потока на этап b).

Изобретение относится к усовершенствованному способу очистки карбоновой кислоты из смеси, включающей одну или несколько карбоновых кислот, выбранных из группы, состоящей из терефталевой кислоты, изофталевой кислоты, ортофталевой кислоты и их смесей, и дополнительно включающей одно или более веществ, выбранных из группы, состоящей из карбоксибензальдегида, толуиловой кислоты и ксилола, причем способ включает: контактирование смеси с селективным растворителем для кристаллизации при температуре и в течение времени, которые эффективны для образования суспензии комплексной соли карбоновой кислоты с селективным растворителем для кристаллизации без полного растворения комплексной соли карбоновой кислоты; извлечение комплексной соли и разложение извлеченной комплексной соли в селективном растворителе для кристаллизации для получения свободной карбоновой кислоты.

Изобретение относится к усовершенствованному способу, который относится к удалению примесей и извлечению маточного раствора и промывного фильтрата из отводимого потока реактора окисления, образующегося при синтезе карбоновой кислоты, обычно терефталевой кислоты.

Изобретение относится к усовершенствованным вариантам способа извлечения металлического катализатора из окисленного сбросового потока маточной жидкости, получаемого при производстве терефталевой кислоты, включающего, например: (а) выпаривание указанного окисленного потока сброса, содержащего терефталевую кислоту, металлический катализатор, примеси, воду и растворитель, в первой зоне испарителя, с получением потока пара и концентрированной суспензии потока сброса; и (b) выпаривание указанной концентрированной суспензии потока сброса во второй зоне испарителя, с получением потока, обогащенного растворителем, и высококонцентрированной суспензии потока сброса, где указанная вторая зона испарителя содержит испаритель, работающий при температуре от 20°С до 70°С, где от 75 до 99 мас.% указанного растворителя и воды суммарно удаляют посредством выпаривания из указанного окисленного потока сброса на стадии (а) и (b); (с) фильтрование указанной высококонцентрированной суспензии потока сброса в зоне разделения твердых продуктов и жидкости, с образованием отфильтрованного продукта и маточной жидкости; (d) промывку указанного отфильтрованного продукта с помощью подаваемых промывочных веществ в указанной зоне разделения твердых продуктов и жидкости, с образованием промытого отфильтрованного продукта и промывочного фильтрата; и обезвоживание указанного отфильтрованного продукта в указанной зоне разделения твердых продуктов и жидкости, с образованием обезвоженного отфильтрованного продукта; где указанная зона разделения твердых продуктов и жидкости содержит, по меньшей мере, одно устройство фильтрования под давлением, где указанное устройство фильтрования под давлением работает при давлении от 1 атмосферы до 50 атмосфер; (е) смешиванием в зоне смешивания воды и, необязательно, экстракционного растворителя с указанной маточной жидкостью и со всем указанным промывочным фильтратом или его частью, с образованием водной смеси; (f) приведение в контакт экстракционного растворителя с указанной водной смесью в зоне экстрагирования, с образованием потока экстракта и очищенного потока, где указанный металлический катализатор извлекают из указанного очищенного потока.
Изобретение относится к усовершенствованному способу разделения смеси нафтеновых кислот, направленному на обеспечение образования комплексов нафтеновых кислот с их натриевыми солями для разделения смеси нафтеновых кислот с близкими химическими и физико-химическими свойствами.

Изобретение относится к механоактивированным аморфным и аморфно-кристаллическим кальциевым солям глюконовой кислоты и композициям кальциевой соли глюконовой кислоты, фармацевтическим препаратам на их основе, способу их получения и применения для лечения стоматологических или костных заболеваний, связанных с нарушением обмена кальция в организме.
Изобретение относится к способу разделения смеси бензойной и коричной кислот, характеризующемуся тем, что к технической смеси бензойной и коричной кислот приливают раствор гидроокиси натрия с получением осадка, приливают воду для получения гомогенного раствора, затем полученную техническую смесь натриевых солей бензойной и коричной кислот состава 2:1-1:2 при общей концентрации 3-5 М смешивают с серной кислотой концентрации 3-5 М, добавление серной кислоты прекращают при рН среды 8-9, а выпавший в осадок комплекс коричной кислоты с ее натриевой солью отфильтровывают от реакционной смеси, растворяют в избыточном количестве воды для растворения натриевой соли коричной кислоты, при этом коричная кислота выпадает в осадок, затем дополнительно обрабатывают серной кислотой концентрации 3-5 М до рН 1-2, отделяют выпавшие в осадок кристаллы коричной кислоты; реакционную смесь, оставшуюся после отделения комплекса, смешивают с раствором серной кислоты концентрации 3-5 М до рН 1-2, в результате чего в осадок выпадает кристаллическая бензойная кислота.

Изобретение относится к термическому способу разделения фракционной конденсацией смеси продукт-газа, полученного гетерогенным катализированным частичным окислением в газовой фазе пропена и/или пропана до акриловой кислоты, для отделения, по меньшей мере, одного массового потока, обогащенного акриловой кислотой, из смеси продукт-газа, содержащего акриловую кислоту, который включает непрерывную стационарную эксплуатацию, по меньшей мере, одного устройства для термического разделения, содержащего, по меньшей мере, одну эффективную разделительную камеру с ректификационной колонной имеющей массообменные тарелки в качестве встроенных разделительных элементов, в которую загружают смесь продукт-газа, содержащего акриловую кислоту, в качестве, по меньшей мере, одного массового потока, содержащего акриловую кислоту, и из которого выгружают, по меньшей мере, один массовый поток, содержащий акриловую кислоту, при условии, что массовый поток, который в общем загружают в эффективную разделительную камеру и получают путем сложения загружаемых в эффективную разделительную камеру отдельных массовых потоков, содержит X вес.% отличных от акриловой кислоты компонентов, массовый поток, который выгружают из эффективной разделительной камеры с наибольшей долей акриловой кислоты, содержит Y вес.% отличных от акриловой кислоты компонентов, соотношение X:Y составляет 5, эффективная разделительная камера, за исключением места загрузки и места выгрузки потока, ограничивается твердой фазой и содержит, кроме массообменных тарелок в качестве встроенных разделительных элементов в ректификационной колонне, по меньшей мере, один циркуляционный теплообменник, и общий объем камеры, заполненный жидкой фазой, составляет 1 м3, причем температура жидкой фазы, по меньшей мере, частично составляет 80°С, при разделении эффективной разделительной камеры на n индивидуальных объемных элементов, причем самая высокая и самая низкая температуры находящейся в отдельном объемном элементе жидкой фазы различаются не более чем на 2°С, а объемный элемент в эффективной разделительной камере является сплошным, общее время пребывания tобщ 20 ч,причем А=(Тi-То )/10°С, То=100°С, Ti=среднее арифметическое значение из самой высокой и самой низкой температуры объемного элемента i в жидкой фазе в °С, msi = общая масса акриловой кислоты, содержащаяся в объеме жидкой фазы объемного элемента i,mi = общее количество выгружаемого из объемного элемента i потока жидкофазной массы, и при условии, что объемные элементы i с содержащейся в них жидкофазной массой mi и в качестве объемных элементов с мертвой зоной также не включены в сумму всех объемных элементов i, как и объемные элементы i, которые не содержат жидкую фазу, и общее количество жидкой фазы, содержащейся в объемных элементах с мертвой зоной, составляет не более 5 вес.% от общего количества жидкой фазы, содержащейся в эффективной разделительной камере.

Изобретение относится к усовершенствованному способу уменьшения количества и/или удаления восстанавливающих перманганат соединений, образующихся при карбонилировании пригодного к карбонилированию реагента с целью получения продукта карбонилирования, содержащего уксусную кислоту, включающему стадии: (а) разделения продукта карбонилирования с получением газообразного верхнего погона, содержащего уксусную кислоту, метанол, метилиодид, воду, метилацетат и, по меньшей мере, одно восстанавливающее перманганат соединение, включая ацетальдегид, и менее летучей фракции катализатора; (b) дистилляции газообразного верхнего погона с получением очищенной уксусной кислоты и низкокипящего газообразного верхнего погона, содержащего метанол, метилиодид, воду, уксусную кислоту, метилацетат и, по меньшей мере, одно восстанавливающее перманганат соединение, включая ацетальдегид; (с) конденсации низкокипящего газообразного верхнего погона и разделения его на сконденсированную тяжелую жидкую фракцию, содержащую метилиодид и метилацетат, и сконденсированную легкую жидкую фракцию, включающую воду, уксусную кислоту и, по меньшей мере, одно восстанавливающее перманганат соединение, включая ацетальдегид; (d) дистилляции легкой жидкой фракции в отдельной ректификационной колонне с получением второго газообразного верхнего погона, включающего метилиодид и, по меньшей мере, одно восстанавливающее перманганат соединение, включая ацетальдегид, и остатка, содержащего фракцию более высококипящей жидкости, содержащей метилацетат, воду и уксусную.

Изобретение относится к химической технологии, а именно к способам получения монохлоруксусной кислоты (МХУК), используемой в производствах карбоксиметилцеллюлозы, фармацевтических препаратов, пестицидов, этилендиаминтетрауксусной кислоты.
Наверх