Способ электрохимической очистки металлических изделий

Изобретение относится к области электрохимической обработки металлических изделий, а именно к способам электрохимической обработки (ЭХО) поверхности металлических изделий от загрязнений технологическими смазками, следов оксидной пленки, продуктов износа и других типов загрязнений. Способ включает электрохимическую обработку в водном рабочем растворе ортофосфорной кислоты с концентрацией 0,1÷2,8 мас.% в режиме анодной или импульсной поляризации постоянным током при соотношении τка=2n:1, где n=0; 1,05 и плотности тока 0,1÷10 А/дм2 и промывку, при этом при проведении процесса очистки через рабочий раствор в зоне обработки пропускают сжатый воздух в количестве 5÷10% от объема рабочего раствора. Технический результат - повышение качества очистки поверхности и производительности процесса без дополнительных затрат энергии. 1 табл.

 

Изобретение относится к электрохимической обработке металлических изделий, а именно к способам электрохимической очистки (ЭХО) поверхности металлических изделий от загрязнений технологическими смазками, следов оксидной пленки, продуктов износа и других типов загрязнений.

Известен способ электрохимического обезжиривания металлоизделий в щелочных растворах [Химическая и электрохимическая обработка стальных труб. Я.Н.Липкин, В.М.Штанько, М.: Металлургия, 1982 г., с.131] при катодной и анодной поляризации. Однако процесс щелочного электрохимического обезжиривания обладает рядом существенных недостатков:

- низкое качество очистки поверхности;

- значительная продолжительность процесса;

- высокие рабочие температуры растворов.

Наиболее близким решением, принятым за прототип, является способ электрохимического обезжиривания металлических изделий, при реализации которого изделие обрабатывают в водном растворе, содержащем 0,1÷2,8 мас.% ортофосфорной кислоты при поляризации постоянным током в режиме анодной или импульсной поляризации при соотношении τкa=2n:1, где τк - катодная поляризация, τа - анодная поляризация и плотности тока 0,1÷10 А/дм2 и затем промывают (патент РФ №1612645, C25F 1/00).

Недостатки способа - невысокое качество, недостаточная эффективность и невысокая производительность процесса очистки поверхности от трудноудаляемых технологических смазок.

Это связано с недостаточной интенсивностью газовыделения (пузырьков кислорода в анодных зонах и пузырьков водорода в катодных зонах обработки), за счет которого, в основном, и происходит удаление загрязнений с поверхности металла.

Техническая задача, решаемая изобретением, заключается в безэнергозатратном повышении качества очистки от трудноудаляемых технологических смазок и интенсификации процесса электрохимической очистки.

Поставленная техническая задача решается за счет того, что в способе электрохимической очистки металлических изделий от технологической смазки, при котором электрохимическую обработку проводят в водном растворе ортофосфорной кислоты концентрацией 0,1÷2,8 мас.% в режиме анодной или импульсной поляризации постоянным током при соотношении τка=2n:1, где n=0; 1,05 и плотности тока 0,1÷10 А/дм2, согласно изобретению, одновременно через рабочий раствор в зоне обработки пропускают сжатый воздух в количестве 5÷10% от объема рабочего раствора.

При проведении процесса ЭХО в 0,1÷2,8 мас.% растворе ортофосфорной кислоты при поляризации постоянным током электрохимическая очистка поверхности происходит в основном за счет газовыделения: пузырьков водорода - в катодных и пузырьков кислорода - в анодных зонах обработки, которые отрываясь от поверхности металла, уносят за собой смазку.

При подаче в зону обработки дополнительно сжатого воздуха (в количестве 5÷10% от объема раствора) происходит его смешивание с рабочим раствором и возрастает интенсивность газоотделения пузырьков воздуха, а также кислорода и водорода с поверхности изделия в катодных и анодных зонах:

- во-первых, за счет наполнения раствора воздухом и образования газожидкостной смеси уменьшается давление столба электролита на зарождающиеся пузырьки водорода и кислорода, а также уменьшается концентрационная поляризация, все эти факторы приводят к значительному уменьшению размеров отрывающихся пузырьков Н2 и О2, т.е. при том же объеме газовыделения Н2 и O2 наблюдается выделение множества мельчайших пузырьков Н2 и O2, которые при отрыве уносят смазку.

- во-вторых, у такой газожидкостной смеси уменьшается гидростатическое сопротивление по сравнению с обычным раствором, что также облегчает отрыв мельчайших пузырьков H2 и O2.

Все это способствует повышению качества очистки поверхности и интенсификации процесса.

При пропускании сжатого воздуха в количестве менее 5% от объема раствора интенсивность газоотделения в сравнении с прототипом увеличивается незначительно, этого недостаточно для повышения качества и производительности процесса очистки от трудноудаляемых смазок.

При пропускании сжатого воздуха в количестве более 10% от объема раствора гидростатическое сопротивление газожидкостной смеси опять возрастает и условия газоотделения ухудшаются, что снижает качество очистки и интенсивность процесса.

Способ электрохимической очистки металлических изделий согласно изобретению подробно раскрывается ниже приведенным описанием.

Способ реализуется следующим образом.

В рабочую ванну с анодными и катодными зонами с помощью насоса поступает при постоянной циркуляции 0,1÷2,8 мас.% раствор H3PO4, с помощью блока управления осуществляют анодную или импульсную (анодно-катодную) поляризацию обрабатываемого изделия при соотношении τкa=2n:1, где n=0; 1,05 и плотности тока 0,1÷10 А/дм2, температуре 15÷35°С и времени обработки 0,1÷30 с, при этом одновременно через рабочий раствор в зоне обработки пропускают сжатый воздух в количестве 5÷10% от объема рабочего раствора. При поляризации обрабатываемого изделия за счет разряда катионов Н+ и диполей H2O из раствора на его поверхности в порах смазки начинают зарождаться газовые пузырьки, которые, вырастая до определенного размера, отрываются от поверхности и уносят за собой смазку.

При увеличении поляризации интенсивность газовыделения возрастает и по мере очищения поверхности газовыделение происходит равномерно по всей поверхности. При этом, если одновременно через рабочий раствор в зоне обработки пропустить сжатый воздух, возрастает интенсивность газоотделения, за счет чего в рабочем растворе создается турбулентность потока с возникновением эффектов, подобных кавитации. Все эти факторы способствуют интенсификации процесса и повышению качества очистки.

Способ был проверен в сравнении с прототипом при удалении следующих технологических смазок: хлорпарафин ХП-470 и сож Блазокут, смазка Блазомил, масляная сож Блазоформ, а также самой трудноудаляемой графитсодержащей смазки, с поверхности нержавеющих труб ⌀ 6,9×0,3 мм; ⌀ 12,0×0,6 мм; ⌀ 16,6×0,35 мм. Допустимый уровень остаточных загрязнений на трубах данного сортамента по нефтепродуктам и солевым загрязнениям - не более 0,05 г/м2. Результаты испытаний приведены в таблице.

Таким образом, из таблицы видно, что предполагаемый способ электрохимической очистки металлических изделий, согласно изобретению, обеспечивает очистку металлических изделий от любых трудноудаляемых загрязнений, при этом остаточные загрязнения по нефтепродуктам и солевым загрязнениям в 2÷3 раза меньше, чем при очистке по прототипу, а производительность процесса очистки в 1,3÷1,5 раза выше.

Характеристика труб Способ очистки труб Скорость движения трубы V, м/мин Остаточные загрязнения, г/м2
Нефтепродукты Солевые загрязнения
1 ⌀6,9×0,3 мм смазка ХП-470 и сож Блазокут ⌀12,0×0,6 мм смазка Блазомил и Блазоформ ⌀16,6×0,35 мм смазка ХП-470 и сож Блазокут Электрохимическая очистка в 1-% H3PO4 при импульсной поляризации τкa=2,1:1; (прототип) 20,0 0,06 0,06
Электрохимическая очистка в 1-% H3PO4 при импульсной поляризации τкa=2,1:1; при пропускании сжатого воздуха 5% от объема раствора 26,0 0,03 0,03
2 ⌀16,6×0,35 мм графитсодержащая смазка Электрохимическая очистка в 1-% H3PO4 при импульсной поляризации τка=2,1:1; (прототип) 10,0 0,09 0,1
Электрохимическая очистка в 1-% H3PO4 при импульсной поляризации τкa=2,1:1; при пропускании сжатого воздуха 5% от объема раствора 15,0 0,04 0,045
Электрохимическая очистка в 1-% H3PO4 при импульсной поляризации τкa=2,1:1, при пропускании сжатого воздуха 10% от объема раствора 15,0 0,03 0,04
Электрохимическая очистка в 1-% H3PO4 при импульсной поляризации τкa=2,1:1; при пропускании сжатого воздуха 3% от объема раствора 12,0 0,08 0,09
Электрохимическая очистка в 1-% НэР04 при импульсной поляризации τкa=2,1:1; при пропускании сжатого воздуха 12% от объема раствора 12,0 0,07 0,08

Способ электрохимической очистки металлических изделий от технологической смазки, при котором электрохимическую обработку проводят в водном рабочем растворе ортофосфорной кислоты с концентрацией 0,1÷2,8 мас.% в режиме анодной или импульсной поляризации постоянным током при соотношении τка=2n:1, где n=0; 1,05, и плотности тока 0,1÷10 А/дм2 и промывают, отличающийся тем, что при проведении процесса очистки одновременно через рабочий раствор в зоне обработки пропускают сжатый воздух в количестве 5÷10% от объема рабочего раствора.



 

Похожие патенты:

Изобретение относится к области электролитического травления металлов и может быть использовано для обработки плоского проката, в частности лент инструментальной стали и/или С-стали.
Изобретение относится к электролитно-плазменной обработке, в частности полированию, металлических изделий из нержавеющих сталей, титана и титановых сплавов и может быть использовано в турбомашиностроении при полировании лопаток.
Изобретение относится к химической и электрохимической очистке металлических поверхностей от трудноудаляемых масляных загрязнений, например от прокатных смазок, с помощью моющих растворов, содержащих каустическую соду, фосфаты и поверхностно-активные вещества (ПАВ).

Изобретение относится к способу очистки твердых поверхностей моющим и очищающим средством бытового и технического назначения и может быть использовано для очистки различных твердых поверхностей от минеральных и органических загрязнений.

Изобретение относится к области электрохимических методов обработки металлических поверхностей и может быть использовано для удаления лакокрасочных покрытий, окалины, накипи с поверхности металлов.

Изобретение относится к электролитной очистке поверхности металлов, преимущественно сварочной проволоки, и может найти применение в металлургии, строительстве, машиностроении.

Изобретение относится к электрохимической очистке деталей из алюминиевых сплавов от высокотемпературных пригаров, образующихся в процессе изготовления деталей методом изотермической штамповки.

Изобретение относится к металлургической и машиностроительной отраслям промышленности и может быть использовано в технологии модифицирования поверхности металлических изделий.

Изобретение относится к области электролитно-плазменной обработки поверхности изделий из стали, металлов и сплавов

Изобретение относится к области электролитно-плазменной обработки поверхности токопроводящего проката и может найти применение при осуществлении технологических операций очистки и травления металлов и сплавов

Изобретение относится к очистке поверхности металлических изделий из стали, медных сплавов или серебра. В способе на металлическую поверхность наносят гель-электролит, содержащий полиэтиленгликоль, перхлорат щелочных металлов, трифторацетат щелочных металлов и два мономера акрилового ряда. Гель-электролит наносят толщиной ≤1 мм, приводят его в контакт с электродом, выполненным из нейтрального по отношению к гель-электролиту материала, при этом полностью исключают контакт указанного электрода с очищаемой металлической поверхностью. Между электродом и очищаемой металлической поверхностью создают электрическое напряжение, при котором электрод является анодом, и величина которого превышает электродный потенциал металла, загрязняющего указанную металлическую поверхность. После очистки гель-электролит удаляют с металлической поверхности. Изобретение обеспечивает эффективную очистку поверхности любых металлов, ускоряет процесс очистки, а также позволяет контролировать качество очистки поверхности. 9 з.п. ф-лы, 2 ил.

Изобретение относится к химической технологии получения углеродных наноматериалов (УНМ), а именно к их очистке от металлсодержащего катализатора. Очистка производится путем растворения катализатора различными реагентами в электролизере, катодное и анодное пространство которого разделено мембраной. Очищаемый УНМ располагают в анодном пространстве электролизера. В качестве электролита используют водные растворы веществ, при электролизе которых в анодном пространстве электролизера происходит накопление реакционоспособных анионов, образующих с катализатором растворимые в воде соли. Использование изобретения не требует большого количества реагентов для удаления катализатора, при этом сам реагент не расходуется и может использоваться многократно, отсутствует образование большого количества сточных вод.
Изобретение относится к области гальванотехники и может быть использовано для удаления полимерных покрытий с поверхности деталей из легированных сталей, в частности из нержавеющих трип-сталей высокой прочности и пластичности, а также при восстановлении особо ответственных деталей летательных аппаратов, например торсионов несущих винтов вертолетов. Способ включает погружение торсиона в электролит, подачу на торсион электрического потенциала, формирование парогазового слоя между электролитом и торсионом. При этом к торсиону вначале прикладывают электрический потенциал от 310 В до 350 В, а после повышения величины тока снижают потенциал до 280-300 В и проводят процесс электролитно-плазменного полирования до получения заданной шероховатости поверхности торсиона. В качестве торсиона несущего винта вертолета используют торсион, выполненный из легированной стали, а в качестве электролита используют водный раствор соли сульфата аммония концентрацией от 5 до 10 г/л, причем удаление покрытия ведут при температуре от 70°C до 85°C до его полного снятия. Технический результат: повышение производительности процесса удаления полимерного покрытия при одновременном полировании стальной поверхности торсиона и снижении трудоемкости процесса. 2 з.п. ф-лы, 1 пр.

Изобретение относится к технологии электролитно-плазменного удаления защитных покрытий из полимерных материалов с поверхности деталей из легированных сталей, в частности из нержавеющих трип-сталей высокой прочности и пластичности, и может быть использовано при восстановлении особо ответственных деталей летательных аппаратов, например торсионов несущих винтов вертолетов. Способ включает погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала. При этом к обрабатываемой детали прикладывают электрический потенциал от 270 В до 300 В, а в качестве электролита используют водный раствор соли сульфата аммония концентрацией от 4 до 8 г/л, причем удаление покрытия ведут при температуре от 70°C до 90°C до полного снятия покрытия. Технический результат: полное удаление полимерного покрытия с получением полированной поверхности детали при снижении трудоемкости процесса. 6 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к области производства высокопрочных углеродных лент на основе полиакрилонитрильных нитей, в частности к электрохимической обработке поверхности углеродных волокон, используемых в конструкционных композитах в качестве упрочняющей матрицы. Электролит содержит аминосодержащий мономер и воду, при этом в качестве аминосодержего мономера он содержит солянокислый анилин с концентрацией 0,001-0,05 моль/л или пиррол с концентрацией 0,001-0,015 моль/л. Технический результат: составы для электрохимической обработки содержат не более двух компонентов, стабильны и обеспечивают увеличение прочности композиционного материала на 10-20%. 2 н.п. ф-лы, 3 ил., 8 табл., 8 пр.
Изобретение относится к металлургическому производству и к электролитической обработке металлов и может быть использовано для снятия оксидных пленок металлов - оксида железа, гематита, магнетита, окалины, образующихся при холодной и горячей прокатке и при термообработке. Способ включает непрерывную подачу электролита в ванну к очищаемым поверхностям проката, поляризацию этих поверхностей путем создания разницы потенциалов между прокатом и электродом, протягивание ленты, подключенной к аноду источника тока, через электролитическую ванну, при этом обработку ленты ведут при разности потенциалов между анодом и катодом от 280 до 340 В и плотности тока на аноде от 0,4 до 0,6 А/см2, ленточный прокат протягивают через электролитическую ванну со скоростью, обеспечивающей время прохождения элементарной площадки проката через электролит в пределах от 10 до 20 секунд, причем площадь погруженных в электролит поверхностей ленты определяют по соотношению Sa<Sк/2, где Sа - площадь погруженных в электролит поверхностей ленты, Sк - площадь поверхности катода. Технический результат: снижение энергозатрат на единицу площади очищенной поверхности ленты, повышение качества очистки, повышение стабильности и производительности очистки. 5 з.п. ф-лы, 3 пр.
Изобретение относится к области электролитической обработки металлов и может быть использовано для снятия оксидных пленок металлов, образующихся при холодной и горячей прокатке, а также при термообработке и коррозии металлов. Способ включает протягивание ленты через электролитическую ванну с использованием источника постоянного напряжения, при этом обрабатываемое изделие служит анодом, а обработку проводят в водных растворах солей электропроводностью 0,05-0,7 Ом-1·см-1, коэффициентом поверхностного натяжения 50-76 мН/м при температуре от 30 до 70°C в течение 10-30 с при напряжении 280-340 В и плотности тока на аноде 0,4-0,6 А/см2. Технический результат: повышение качества поверхности обрабатываемого проката, стабильности процесса обработки и однородности очистки поверхности изделия от окалины и пленок оксидов металлов, а также снижение энергозатрат на единицу площади очищаемой поверхности. 3 пр.

Изобретение относится к электролитическим способам обработки металлов и может быть использовано для травления полосы из нержавеющей стали. Способ включает травление полосы из нержавеющей ферритной стали в ванне смесью, содержащей H2SO4 и избыток по меньшей мере одного окислителя, при этом на сталь подают электрический ток, а указанная смесь не содержит HF. Второй вариант способа включает обработку указанной стали в ванне смесью, содержащей H2SO4 и избыток по меньшей мере одного окислителя, обеспечивающего превращение всего количества сульфата железа (II) в сульфат железа (III) (Fe2(SO4)3), и подачу тока на сталь, причем концентрация H2SO4 составляет от 10 г/л до 200 г/л. Технический результат: снижение общего количества химических реагентов, содержащихся в электролите травления. 2 н. и 23 з.п. ф-лы, 6 табл., 4 пр., 3 ил.
Наверх