Установка для испытания горных пород на послойный срез при действии осевой нагрузки

Изобретение относится к испытательной технике, к испытаниям на прочность. Техническим результатом изобретения является повышение объема получаемой информации путем обеспечения испытаний стержневых образцов материалов на послойный срез при действии осевой нагрузки. Установка для испытания горных пород на послойный срез при действии осевой нагрузки содержит основание, установленный на нем барабан, резец для взаимодействия с образцом, закрепленный на барабане коаксиально последнему, держатель образца в виде обоймы, толкатель для взаимодействия с одним из торцов образца и механизм перемещения толкателя. Причем механизм перемещения толкателя выполнен в виде пресса, а между обоймой и барабаном установлен упор для взаимодействия со вторым торцом образца. 1 ил.

 

Изобретение относится к испытательной технике, к испытаниям на прочность.

Известна установка для испытания горных пород на послойный срез при действии осевой нагрузки (патент РФ №1557478, кл. G01N 3/24, 1988), содержащая основание, установленный на нем барабан, резец для взаимодействия с образцом, закрепленный на барабане коаксиально последнему, держатель образца в виде обоймы, толкатель для взаимодействия с одним из торцов образца и механизм перемещения толкателя.

Недостаток установки состоит в том, что на ней неосуществимы испытания горных пород на послойный срез при действии осевой нагрузки. Это не позволяет исследовать условия пылеобразования при разрушении пород в процессе добычи, а без этого сложно выбрать эффективные приемы и средства пылеподавления.

Известна установка для испытания горных пород на послойный срез при действии осевой нагрузки (патент РФ №1796979, кл. G01N 3/24, 1991), содержащая основание, установленный на нем барабан, резец для взаимодействия с образцом, закрепленный на барабане коаксиально последнему, держатель образца в виде обоймы, толкатель для взаимодействия с одним из торцов образца и механизм перемещения толкателя.

Недостаток установки состоит в том, что на ней неосуществимы испытания образцов горных пород на послойный срез при действии осевой нагрузки. Поэтому на ней также невозможно исследовать условия пылеобразования при разрушении пород в процессе добычи и сложно выбрать эффективные приемы и средства пылеподавления.

Техническим результатом изобретения является повышение объема получаемой информации путем обеспечения испытаний стержневых образцов материалов на послойный срез при действии осевой нагрузки.

Технический результат достигается тем, что установка для испытания горных пород на послойный срез при действии осевой нагрузки, содержащая основание, установленный на нем барабан, резец для взаимодействия с образцом, закрепленный на барабане коаксиально последнему, держатель образца в виде обоймы, толкатель для взаимодействия с одним из торцов образца и механизм перемещения толкателя, согласно изобретению, механизм перемещения толкателя выполнен в виде пресса, а между обоймой и барабаном установлен упор для взаимодействия со вторым торцом образца.

На чертеже представлена схема установки.

Установка для испытания горных пород на послойный срез содержит основание 1, установленный на нем барабан 2, резец 3 для взаимодействия с образцом 4, закрепленный на барабане коаксиально последнему, держатель образца в виде обоймы 5, толкатель 6 для взаимодействия с одним из торцов образца и механизм 7 перемещения толкателя.

Механизм 7 перемещения толкателя выполнен в виде пресса. Между обоймой 5 и барабаном 2 установлен упор 8 для взаимодействия со вторым торцом образца.

Механизм 7 перемещения толкателя показан на чертеже в виде винтового пресса с гайкой 9, приводом 10 вращения гайки. Между механизмом 7 и толкателем 6 установлена пружина 11. Барабан 2 через муфту 12 соединен с инерционным грузом 13. Груз 13 через муфту 14 соединен с приводом вращения 15.

Установка работает следующим образом.

Включают привод 10 винтового пресса, вращают гайку 9, перемещают механизм 7 через пружину 11 и толкатель 6, нагружают образец 4 заданным осевым усилием. При выключенной муфте 12 и включенной муфте 14 приводом 15 раскручивают инерционный груз 13 до скорости, при которой на грузе создается заданный запас кинетической энергии. Выключают муфту 14 и включают муфту 12. Груз 13 приводит во вращение барабан 2. Резец 3 производит срез образца 4. После среза образец 4 перемещается в обойме 5 механизмом 7 до упора 8 и нагружается до заданного осевого усилия. Резец 3 производит повторный срез и так далее, до полной реализации накопленной энергии на грузе 13. Следующие испытания проводят при новом уровне осевой нагрузки на образце, при новом запасе энергии на инерционном грузе 13. При постоянно включенных муфтах 12,14 послойный срез проводят приводом 15 с регулируемой частотой среза.

Установка существенно повышает объем информации путем обеспечения испытаний горных пород на послойный срез при действии осевой нагрузки благодаря возможности исследовать пылевыделение при разрушении пород горными машинами, что повышает надежность выбора средств и эффективность пылеподавления.

Установка для испытания горных пород на послойный срез при действии осевой нагрузки, содержащая основание, установленный на нем барабан, резец для взаимодействия с образцом, закрепленный на барабане коаксиально последнему, держатель образца в виде обоймы, толкатель для взаимодействия с одним из торцов образца и механизм перемещения толкателя, отличающаяся тем, что механизм перемещения толкателя выполнен в виде пресса, а между обоймой и барабаном установлен упор для взаимодействия со вторым торцом образца.



 

Похожие патенты:

Изобретение относится к области обувного производства, а именно к исследовательскому приборному комплексу, предназначенному для определения зависимости жесткости каблука при взаимодействии его с опорной поверхностью, что имеет место в фазе переднего толчка при ходьбе.

Изобретение относится к обувной подотрасли легкой промышленности. .

Изобретение относится к механике грунтов. .

Изобретение относится к исследованиям механических свойств снега и может быть использовано для определения оптимального режима уборки снежных завалов. .

Изобретение относится к области строительных конструкций и может быть использовано при контроле качества деревянных строительных конструкций. .

Изобретение относится к устройству и способу определения прочности на сдвиг минеральной ваты. .

Изобретение относится к испытательной технике, а именно к средствам контроля прочности стыкового соединения стержней. .

Изобретение относится к испытательной технике, в частности к устройствам для испытания плоских ленточных кабелей на прочность. .

Изобретение относится к испытательной технике. .

Изобретение относится к машиностроению, а именно к испытанию материалов на сдвиг

Изобретение относится к области машиностроения, в частности к способам и устройствам для испытания на сдвиг, и может быть использовано при изготовлении многослойных панелей в самолетостроении, судостроении, строительстве и других отраслях промышленности. Сущность: неподвижные плиты соединяют между собой жестко, а на обе стороны подвижной плиты и на внутренние стороны неподвижных плит наносят клейкий слой равномерной толщины по всей площади нанесения, образуя гладкую поверхность. На торцы подвижной и неподвижных плит наносят метки для определения величины сдвига. Подвижную плиту устанавливают в пазы, обеспечивающие параллельность перемещения подвижной плиты относительно неподвижных. Регистрируют значение силы, соответствующей величине перемещения. Устройство состоит из двух неподвижных плит и подвижной плиты, расположенной симметрично относительно неподвижных с регулируемыми зазорами. Поверхности плит выполнены с заданной шероховатостью, обеспечивающей равномерную толщину клейкого слоя по всей поверхности нанесения. На подвижной и неподвижных плитах выполнены метки для определения величины сдвига и подвижная плита установлена в пазах с возможностью обеспечения параллельности перемещения подвижной плиты относительно неподвижных плит. Неподвижные плиты жестко соединены между собой. Технический результат: повышение достоверности проведения испытаний за счет повышения качества и точности проведения испытаний. 2 н.п. ф-лы, 1 ил.

Изобретение относится к испытательной технике, к испытаниям на прочность. Установка содержит основание, установленный на нем барабан, резец для взаимодействия с образцом, закрепленный на барабане коаксиально последнему, держатель образца в виде обоймы, толкатель для взаимодействия с одним из торцов образца, упор для взаимодействия со вторым торцом образца и механизм перемещения толкателя, выполненный в виде пресса. Держатель образца, толкатель, упор и механизм перемещения толкателя установлены на поворотной платформе, ось поворота которой перпендикулярна оси вращения барабана. Технический результат: повышение объема получаемой информации путем обеспечения испытаний стержневых образцов материалов на послойный срез при действии осевой нагрузки с возможностью изменения ориентации плоскостей послойного среза относительно направления действия осевой нагрузки в ходе испытания. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для определения прочности растительных материалов (соломы, зерен злаков, отходов древесины и др.) в условиях сдвига с целью обоснованного расчета и конструирования измельчающего оборудования. Устройство содержит рабочие органы, нагружающее устройство с измерителем усилия сдвига. Рабочие органы выполнены в виде внешнего неподвижного и внутреннего подвижного цилиндров, сопряженных между собой по посадке с зазором и имеющих соосные радиальные отверстия одного диаметра для размещения испытуемых образцов. Диаметр сечений испытуемых образцов соответствует диаметру соосных радиальных отверстий, а их длина - суммарной толщине стенок внешнего неподвижного и внутреннего подвижного цилиндров, которые в свою очередь снабжены соответственно охватывающим и охватываемым вкладышами для фиксации испытуемых образцов. Технический результат: повышение достоверности результатов определения сдвиговой прочности. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области физики материального (контактного) взаимодействия, а именно к способу определения угла φн внутреннего трения и удельного сцепления - сн материальной связной среды нарушенной структуры, воспринимающей давление свыше гравитационного. Способ определения физических параметров прочности нарушенной структуры материальной среды заключается в определении при лабораторном сдвиге образцов среды ненарушенной структуры в условиях компрессии угла φ=φстр внутреннего трения и удельного сцепления с=сстр среды ненарушенной структуры при построении графика Кулона-Мора τi=pi·tgφстр+сстр предельного состояния среды под давлением pi, где τi - напряжение сдвига среды под давлением сжатия pi. Для определения угла внутреннего трения среды с нарушенной структурой, образующейся при достижении под штампом давления, равного бытовому давлению рстр.б=рб=(γ·h-сстр)ctgφстр на отметке h массива ее естественного сложения, определяют угол θ=φстр+φн=arcsin[2sinφстр/(1+sin2φстр)]. Определяют угол внутреннего трения среды с нарушенной структурой по выражению φн=θ-φстр, а удельное сцепление материальной среды с нарушенной структурой определяют по зависимости с н = с с т р [ 2 − t g φ н t g φ с т р ] . Технический результат - получение связи физических параметров прочности φн и сн нагруженной материальной среды сверх природного гравитационного (бытового) давления с параметрами структурной прочности среды φстр и сстр.2 ил.

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании процесса энергообмена в образцах горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд содержит опорную раму, размещенные в ней захват для образца и захват для контробразца, гидравлический механизм взаимного поджатия образцов, связанный с захватом для образца, гидравлический механизм взаимного перемещения образцов, связанный с захватом для контробразца, источники давления, связанные с механизмами поджатия и сдвига, и механический аккумулятор энергии с пружиной, установленный между механизмом перемещения и захватом для контробразца. Механический аккумулятор энергии выполнен в виде направляющей, соединенной с захватом для контробразца, толкателя в виде полого цилиндра, размещенного на направляющей и соединенного с механизмом перемещения, при этом пружина размещена на направляющей между захватом для контробразца и толкателем и выполнена тарельчатой, тарелки уложены в группы, в каждой группе тарелки обращены друг к другу вогнутыми поверхностями. При этом количество тарелок с каждой стороны в каждой группе одинаковое, а в разных группах подобрано в соответствии с задаваемой характеристикой жесткости аккумулятора. Технический результат: увеличение объема информации при изучении процесса энергообмена в образцах горных пород за счет обеспечения исследований процесса энергообмена как при постоянной, так и при переменной характеристике жесткости аккумулятора энергии. 1 з.п. ф-лы, 3 ил.

Изобретение относится к испытательной технике и может быть использовано для испытания образцов строительных материалов на совместное действие усилий растяжения, среза и изгиба, и позволяет испытывать образцы материалов при различных комбинациях нагружения их усилиями растяжения, среза и изгиба в совокупности с разрывной машиной. Устройство содержит соосные захваты для крепления образца, дугообразные рычаги, соединенные с захватами, и платформы, опирающиеся на стенки захватов. Дугообразные рычаги, выполненные в виде коромысел с отверстиями, с помощью болтов соединены с захватами образца и с платформами, опирающимися на стенки захватов. Центры отверстий дугообразного рычага, соединенного с верхним захватом лежат на одной окружности с центрами отверстий рычага, соединенного с нижним захватом. Технический результат: расширение функциональных возможностей путем нагружения образца не только до разрушения его усилием растяжения, среза или изгиба, но и до разрушения его совместным действием усилий растяжения, среза и изгиба при фиксированном соотношении между величиной усилия при растяжении, величиной усилия при срезе и величиной изгибающего момента. 7 ил.

Изобретение относится к методам определения механических характеристик клеевых соединений при интенсивных тепловых воздействиях. Сущность: осуществляют индукционный нагрев образца клеевого соединения до заданной температуры со скоростью 5-50°C/с и определяют искомые характеристики. Технический результат: повышение точности определения механических характеристик клеевого соединения. 4 ил.

Изобретение относится к физике материального контактного взаимодействия, конкретно к способу установления предельного состояния деформируемой сжимающей и растягивающей нагрузкой материальной среды. Сущность: по данным сдвига нагруженной ступенями нормального давления pi материальной среды на глубине h тангенциальной нагрузкой τi строят график зависимости τi=ƒ(pi). График линеаризируют прямой до пересечения с осью τi и осью pi, на оси τi устанавливают величину удельного сцепления структурированной среды с=сстр, на оси pi устанавливают величину противодавления связности среды -ре= -сстр·ctgφстр и определяют угол φ=φстр внутреннего трения структурированной среды. Закон Ш. Кулона τстр=pi·tgφстр+сстр устанавливают в интервале нормального давления -(ре)≤pi≤(+рб), где рб=(γстр·h-сстр)ctgφстр - гравитационное (бытовое) давление для структурированной среды с удельным весом γстр, при давлении pi>рб. Предельное состояние материальной среды рассматривают с нарушенной структурой и описывают зависимостью τн=рн·tgφн+сн, а предельное состояние материальной среды в общем виде описывают системой уравнений. Технический результат: возможность определения границ предельного состояния материальной связной среды с нарушенной структурной прочностью и установления закономерности предельного состояния связной среды за пределами ее структурной прочности и закона Ш. Кулона при давлениях pi свыше гравитационного (бытового) рб, т.е. pi>рб. 3 ил.,1 табл.
Наверх