Способ гидрирования ненасыщенных триглицеридов

Изобретение относится к масложировой промышленности. Способ предусматривает гидрирование полиненасыщенных триглицеридов в присутствии нанесенного на подложку катализатора из благородного металла и водорода. Катализатор из благородного металла представляет собой композит твердой подложки, наночастиц благородного металла и полимера. Температура процесса составляет от 30°С до 200°С, а давление водорода составляет 1-200 бар. Гидрированное пищевое масло имеет йодное число между 60 и 80, количество транс-изомеров - между 2,5 и 9, SC10 - между 39 и 47 г/100 г и SC35 - максимально 15 г/100 г, предпочтительно между 2 и 15 г/100 г, где SC10 и SC35 представляют собой содержание твердого жира при 10°С и 35°С, определяемого методом AOCS для установления содержания твердого жира. Также, масло для жарки, основанное на гидрированном пищевом масле, имеет йодное число по меньшей мере 80, содержание транс-изомеров - между 0,5 и 5 мас.%. Гидрированное пищевое масло получено вышеописанным способом. Изобретение позволяет снизить продукты изомеризации и образовывать лишь небольшие количества дополнительных насыщенных продуктов. 4 н. и 11 з.п. ф-лы.

 

Настоящее изобретение относится к способу гидрирования ненасыщенных триглицеридов, таких как пищевые масла, для производства частично насыщенных триглицеридов (масла/жиры), а также на гидрированные пищевые масла, получаемые посредством такого способа.

Известно применение каталитического гидрирования в присутствии водорода для получения частично гидрированных триглицеридов, особенно застывших жиров для использования в кулинарии и жира для жарки, жира для бутербродов, такого как маргарин, и лубрикантов из триглицерида, то есть из растительного масла, такого как соевое масло или рапсовое масло. Такое гидрирование необходимо, помимо прочих причин, для повышения устойчивости к окислению (уменьшения количества линоленовой кислоты) и для получения триглицерида с желаемыми характеристиками плавления, например, с целью получения достаточной растекаемости. Гидрирование может проводиться с применением обычных катализаторов гидрирования, таких как никелевые катализаторы или катализаторы на основе благородных металлов. Используемые при этом триглицериды являются полиненасыщенными, обычно имеющими в своей основе остатки жирных кислот от С12 до С22. Большинство остатков жирных кислот представляют собой С16 и С18 жирные кислоты. Гидрирование обычно приводит к моно- и ди-ненасыщенным остаткам жирных кислот в составе триглицерида.

По мере роста опасений потребителя относительно вреда здоровью при использовании полученных при гидрировании продуктов растет также и желание максимально понизить содержание транс-изомеров ненасыщенных жирных кислот. В природных продуктах доминирует цис-изомер. Помимо гидрирования обычно наблюдается также изомеризация, приводящая к образованию транс-изомеров. При обычном каталитическом гидрировании соевого масла с получением продукта, имеющего содержание полностью насыщенных жирных кислот примерно от 12 до 14% (иодное число около 70), наблюдается увеличение содержания транс-изомера на 30-50% в дополнение к естественному содержанию (обычно около 15 мас.%). При этом типичные условия реакции включают применение обычного никелевого катализатора гидрирования, температуру между 175 и 200°С и давление водорода от 0,7 до 2 бар. В непищевых применениях частично гидрированных триглицеридов, таких как лубриканты, присутствие транс-изомеров нежелательно, вследствие более высокой температуры плавления транс-изомеров. Следует заметить, что некоторые виды предварительной обработки (поли)ненасыщенных триглицеридов, например очистка или обесцвечивание, могут в небольшой степени приводить к изомеризации. Это обычно считается причиной наличия примерно от 0,5 до 2 мас.% транс-изомеров в триглицериде ещё до гидрирования.

Метод получения триглицеридов с частично ненасыщенными жирными кислотами с низким содержанием транс-изомера уже был предметом активных исследований. Один подход заключается в регулировании условий гидрирования, когда при применении большого количества водорода на поверхности катализатора происходит предпочтительное промотирование гидрирования по сравнению с изомеризацией. Это означает, что необходимо работать при низких температурах, при высоком парциальном давлении водорода и пропорционально небольшом количестве катализатора по отношению к количеству гидрируемого компонента. Этот метод позволяет понизить содержание транс-изомера примерно до 10%, при этом повышение содержания насыщенных жирных кислот составляет около 15%. Однако данный метод малопривлекателен с коммерческой точки зрения, поскольку для достижения более высоких давлений необходимы значительные капитальные инвестиции.

Также известно применение нанесенных на подложку катализаторов на основе благородных металлов для гидрирования триглицеридов. Свойством таких катализаторов является производство слишком большого количества полностью насыщенных остатков жирных кислот. Обзор проблем и возможностей подавления образования транс-изомера дается в статье “Hydrogenation of oils at reduced TFA content” в Oils&Fats International, July 2004 (pages 33-35).

EP-A 1,002,578 описывает применение коллоидов благородных металлов, стабилизированных поверхностно-активным веществом, для селективного гидрирования жирных кислот с получением низкого содержания транс-жирных килот.

Было бы весьма привлекательно иметь катализируемый благородными металлами способ гидрирования ненасыщенных триглицеридов с более высокой селективностью, чем у известных к настоящему моменту процессов, то есть процесс для производства гидрированных триглицеридов с пониженным содержанием транс-изомеров и насыщенных продуктов, по сравнению с известными процессами гидрирования.

Соответственно, предметом настоящего изобретения является разработка процесса гидрирования ненасыщенных триглицеридов, то есть пищевых масел, который не имеет вышеуказанных недостатков или имеет их в значительно меньшей степени.

В первом варианте осуществления, настоящее изобретение предоставляет процесс для гидрирования полиненасыщенных пищевых масел в присутствии нанесенного на подложку катализатора из благородного металла и водорода, при этом используемый в процессе катализатор из благородного металла представляет собой агрегат твердой подложки, наночастиц благородного металла и полимера.

Было неожиданно обнаружено, что агрегат подложки, наночастиц и полимера дает катализатор, активный в гидрировании пищевых масел, и в то же время приводит в результате к низкому содержанию продуктов изомеризации и образованию лишь небольших количеств дополнительных насыщенных продуктов.

Во втором варианте осуществления, настоящее изобретение направлено на ненасыщенные гидрированные пищевые масла, такие как жир, добавляемый в тесто для рассыпчатости, или масла для жарки, которые могут быть получены посредством процесса в соответствии с настоящим изобретением. Такие гидрированные пищевые масла, предпочтительно соевое масло, отличаются комбинацией иодного числа, количества транс-изомера, которое является низким для гидрированных пищевых масел, и содержания твердого жира при 10 и 35°С, SC10 и SC35, определяемого методом AOCS для установления содержания твердого жира (rev 1997).

Эти гидрированные масла особенно отличаются присутствием такого количества транс-изомеров, которое является промежуточным между изначальным количеством транс-изомеров в материале для гидрирования, обычно около от 0,5 до 2 мас.%, и количеством, которое образуется при процессе гидрирования в соответствии с современным уровнем техники.

Более детально, данные гидрированные пищевые масла отличаются иодным числом между 60 и 80, количеством транс-изомеров в большинстве случаев максимально 9 мас.%, но не менее 2.5 мас.%, значением SC10 между 39 и 47 г/100 г, и значением SC35 максимально 15 г/100 г, предпочтительно между 2 и 15 г/100 г. Эти продукты могут использоваться в качестве жира, добавляемого в тесто для рассыпчатости, и в маргаринах.

Гидрированные масла для жарки характеризуются комбинацией иодного числа и композиции.

Другой вариант осуществления настоящего изобретения соответственно относится к маслам для жарки, которые отличаются иодным числом по меньше мере 80, содержанием транс-изомеров между 0,5 и 5, в некоторых случаях между 2,0 и 5,0 мас.%. Кроме того, предпочтительно как можно меньшее содержание линоленовой кислоты, предпочтительно менее 5 мас.%, более предпочтительно менее 3 и наиболее предпочтительно менее 2 мас.%.

Важным аспектом в процессе по настоящему изобретению является морфология специфичного катализатора. В этом катализаторе активным металлом является благородный металл, который присутствует в форме кластеров элементарных наночастиц, имеющих размер от 1 до 12 нм. Морфология катализатора представляет собой агрегат трех компонентов. Первым аспектом агрегата является комбинация наночастиц и полимера. Эти два компонента соединяются с образованием кластеров полимер-связанных наночастиц. Природа кластеров не до конца понятна; возможно, частицы связаны вместе посредством полимера; также возможно, что полимер образует некое подобие покрытия, или что полимер выступает в роли экранирующего элемента между наночастицами и приводит к образованию кластеров наночастиц. Размер кластеров обычно составляет от 12 до 40 нм.

Вторым аспектом является соединение (кластеров) наночастиц и полимера с подложкой. Здесь также механизм не совсем ясен. Однако наблюдалось, что агрегат формирует устойчивый гетерогенный катализатор, который может с большими преимуществами быть использован в селективном гидрировании ненасыщенных триглицеридов. Природа сцепления неизвестна; это может быть один из механизмов, описанных выше по отношению к наночастицам.

В настоящем изобретении, катализатор производится по методу, который включает восстановление прекурсор благородного металла, растворенного в растворе, содержащем также полимер, при этом раствор может также содержать диспергированный материал подложки. Вследствие восстановления в присутствии полимера при восстановлении образуются агрегаты наночастиц и полимера. Эти агрегаты могут представлять собой наночастицы или кластеры наночастиц. В случае если подложка не присутствовала при процессе восстановления, содержащий наночастицы раствор смешивают с подложкой, предпочтительно в виде водной суспензии. Это приводит к агрегатам (кластеров) наночастиц, подложки и полимера.

В целом, количество благородного металла в агрегате составляет от 0,01 до 10,0 мас.% относительно веса всего агрегата, предпочтительно между 0,1 и 5,0 мас.%.

Благородный металл может выбираться из группы, состоящей из платины, палладия, иридия, родия, рутения, золота, серебра и их комбинаций, предпочтительно платина. Гидрирование ионов благородного металла в металл может проводиться любым подходящим способом, известным для восстановления солей благородных металлов в благородные металлы. Примерами служат применение водорода или восстановительными материалами, растворенными совместно с солями благородных металлов, с последующим нагреванием, при необходимости. Примерами восстановительных материалов служат этиленгликоль, NaBH4, формиат и тому подобные.

Материалом подложки может служить любой материал, подходящий для использования в качестве подложки для гидрирования пищевых масел, в частности соевого масла. Требованием к нему является нерастворимость подложки в масле. Этому требованию соответствует, например, уголь и хорошо известные оксидные материалы, такие как силикагель, окись алюминия, оксид циркония, оксид титана, оксид цинка и им подобные, но возможно также применение материалов на основе молекулярных сит и (синтетической) глины.

Хотя механизм полностью неясен, предполагается, что полимер играет важную роль в сохранении структуры агрегата. Возможно также, что это является определяющим фактором в получении кластеров наночастиц. Подходящими полимерами являются такие материалы, которые промотируют образование кластеров и агрегатов. Предпочтительными примерами являются полимеры на основе углеродных цепочек, содержащих также гетероатомы, такие как N, S или O, которые могут проявлять координационную активность по отношению к атомам металла в наночастицах и/или во время гидрирования. Особое предпочтение отдается таким полимерам, которые содержат циклические структуры в качестве боковых цепей, особенно ароматическое или алифатическое кольцо с по меньшей мере одним гетероатомом, предпочтительно азотом. Наиболее предпочтительно применение PVP (поливинил пирролидона), поскольку он дает наилучшие результаты.

Количество полимера в окончательном агрегате может широко варьировать. Подходящие количества находятся в том же порядке величин, что и количества благородного металла, или выше. Это приводит к количествам между 0,1 и 15 мас.% по отношению к весу всего агрегата.

Один катализатор, который может использоваться в настоящем изобретении, был описан в Roelofs et al, Chem Commun., 2004, pages 970-971. Этот документ описывает производство стабилизированных поливинилпирролидоном палладиевых нанокластеров на гидроталькитовой подложке.

Гидрирование пищевых масел, предпочтительно соевого масла, может проводиться обычным для такого превращения способом. Температура, продолжительность и давление водорода могут быть подобраны с учетом требуемого иодного числа и количества транс-изомеров. В целом, температура составляет от 30 до 200°С, давление водорода между 1 и 200 бар и продолжительность варьирует между 5 мин и 4 ч. В целом, более высокая температура, более высокое давление водорода и большая продолжительность процесса приводят к более низким значениям иодного числа.

Катализатор предпочтительно суспендируют в пищевом масле и, по окончании гидрирования, удаляют фильтрованием. Возможно также применение реактора с неподвижным слоем или циркуляционного реактора, содержащего катализатор в фиксированной форме. Количество катализатора, в пересчете на благородный металл, предпочтительно составляет от 5 до 10000 м.д. по отношению к весу гидрируемого масла.

Настоящее изобретение далее разъяснено на основе примеров.

1. Приготовление нано-Pt катализатора на силикагельной подложке.

В типичном эксперименте 3 г PVP растворяли в 75 г этиленгликоля.

К этому раствору добавляли 20,2 г 3,13% раствора тетраамин платины нитрата (из расчета на Рt). Этот Pt-содержащий раствор нагревали 55 сек при 750 Вт в лабораторной микроволновой печи. Раствор изменялся с прозрачного оранжевого на черную суспензию, указывая на восстановление Pt из ионной в нульвалентную.

Этот горячий раствор добавляли к суспензии 12 г порошка силикагеля (размер частиц 30 микрометров, 480 м2/г и объем пор 1.1 мл/г) в 200 мл деионизированой воды. После интенсивного перемешивания в течение 16 ч продукт промывали, отфильтровывали и высушивали при 110°С. Таким образом получали Pt катализатор на силикагельной подложке с содержанием платины 1,3% Pt. Просвечивающая электронная микроскопия (TEM) показала распределение размеров частиц от 2 до 7 нм для Pt-наночастиц и от 14 до 40 нм для кластеров наночастиц.

2. Гидрирование соевого масла с получением низко-транс-жира, добавляемого в тесто для рассыпчатости, с иодным числом 70.

В типичном эксперименте 50 г очищенного, обесцвеченного и деодорированного соевого масла гидрировали при давлении водорода 4 бар и температуре 50°С с нано-Pt катализатором на силикагельной подложке из примера 1, содержащим 1,3% Pt. Состав изначального масла: 10,5 мас.% C16:0, 4,3 мас.% C18:0, 23,9 мас.% C18:1, 51,1 мас.% C18:2, 6,4 мас.% C18:3 и суммарное количество транс-изомеров 2,2 мас.%. Количество использованного катализатора составило 50 ppm из расчета на количество благородного металла. Гидрирование проводилось до тех пор, пока количество поглощенного водорода стало соответствовать уровню иодного числа 70. Был определен следующий состав масла при этом иодном числе 70: 10,6 мас.% C16:0, 25,9 мас.% C18:0, 39,8 мас.% C18:1, 16,9 мас.% C18:2, 0,7 мас.% C18:3 и суммарное количество транс-изомеров 4,5 мас.%. Кривая Твердых Жиров, определенная методом ЯМР низкого разрешения (AOCS метод rev 1997) этого полученного масла дала следующие характеристики: 43% твердого компонента при 10°С, 33% твердого компонента при 20°С, 20% твердого компонента при 30°С, 13% твердого компонента при 35°С и 8% твердого компонента при 40°С.

3. Гидрирование соевого масла с получением низко-транс-масла для жарки с иодным числом 110.

В типичном эксперименте 50 г очищенного, обесцвеченного и деодорированного соевого масла гидрировали при давлении водорода 4 бар и температуре 50°С с нано-Pt катализатором на силикагельной подложке из примера 1, содержащим 1,3% Pt. Состав изначального масла: 10,5 мас.% C16:0, 4,3 мас.% C18:0, 23,9 мас.% C18:1, 51,1 мас.% C18:2, 6,4 мас.% C18:3 и суммарное количество транс-изомеров 2,2 мас.%. Количество использованного катализатора составило 50 ppm из расчета на количество благородного металла. Гидрирование проводилось до тех пор, пока количество поглощенного водорода стало соответствовать уровню иодного числа 110. Был определен следующий состав масла при этом иодном числе 110: 10,6 мас.% C16:0, 9,9 мас.% C18:0, 29,3 мас.% C18:1, 41,1 мас.% C18:2, 2,9 мас.% C18:3 и суммарное количество транс-изомеров 2,9 мас.%.

1. Способ гидрирования полиненасыщенных триглицеридов в присутствии нанесенного на подложку катализатора из благородного металла и водорода, при этом используемый в процессе катализатор из благородного металла представляет собой композит твердой подложки, наночастиц благородного металла и полимера, при этом температура процесса составляет от 30 до 200°С, а давление водорода составляет 1-200 бар.

2. Способ по п.1, где наночастицы благородного металла представляют собой кластеры элементарных наночастиц.

3. Способ по п.1 или 2, где подложка выбирается из группы, состоящей из оксидных подложек, предпочтительно силикагель, оксид алюминия, оксид циркония, оксид титана и оксид цинка.

4. Способ по п.1, где полимер выбирается из группы ароматических полимерных материалов, содержащих, по меньшей мере, один гетероатом в ароматической группе, предпочтительно азот.

5. Способ по п.4, где полимер выбирается из группы полимерных материалов, состоящих из поливинилпирролидона.

6. Способ по п.1, где благородный металл выбирается из платины, палладия, иридия, родия, рутения, серебра, золота и их комбинаций, предпочтительно платина.

7. Способ по п.1, где количество благородного металла находится между 0,01 и 10 мас.%, предпочтительно между 0,5 и 5 мас.% от общего веса катализатора.

8. Способ по п.1, где элементарные наночастицы благородного металла имеют размер примерно от 1 до 12 нм, а кластеры элементарных наночастиц благородного металла имеют размер от 12 до 40 нм или даже больше.

9. Способ по п.1, где триглицерид представляет собой пищевое масло, предпочтительно соевое масло.

10. Способ по п.1, где триглицерид содержит некоторое количество линоленовой кислоты.

11. Способ по п.10, где линоленовая кислота гидрируется до моно- или ди-ненасыщенных соединений.

12. Способ по п.1, где указанный катализатор получают при помощи способа, включающего восстановление ионов благородного металла в кластеры благородного металла в присутствии связывающего полимера, с последующим контактированием кластеров благородного металла с подложкой и получением требуемого катализатора.

13. Гидрированное пищевое масло, предпочтительно соевое масло, полученное способом по любому из пп.1-12, имеющее йодное число между 60 и 80, количество трансизомеров между 2,5 и 9, SC10 между 39 и 47 г/100 г и SC35 максимально 15 г/100 г, предпочтительно между 2 и 15 г/100 г, где SC10 и SC35 представляют собой содержание твердого жира при 10°С и 35°С, определяемого методом AOCS для установления содержания твердого жира.

14. Масло для жарки, основанное на гидрированном пищевом масле, предпочтительно соевом масле, полученное способом по любому из пп.1-12, имеющее йодное число по меньшей мере 80, содержание трансизомеров между 0,5 и 5 мас.%.

15. Гидрированное пищевое масло, полученное при помощи способа по любому из пп.1-12.



 

Похожие патенты:
Изобретение относится к области катализаторов, предназначенных для гидрирования триглицеридов растительных масел и жиров, и может использоваться в пищевой, парфюмерной, нефтехимической и нефтеперерабатывающей промышленности.
Изобретение относится к области катализаторов, в частности, предназначенных для гидрирования триглицеридов растительных масел и жиров, и может использоваться в пищевой, парфюмерной, нефтехимической и нефтеперерабатывающей промышленности.

Изобретение относится к масложировой промышленности, в частности к усовершенствованному способу гидрирования растительных масел и дистиллированных жирных кислот, и может использоваться в пищевой, парфюмерной, нефтехимической и нефтеперерабатывающей промышленности.
Изобретение относится к масложировой промышленности, в частности к способу получения пищевого саломаса, предназначенного для изготовления маргариновой продукции.
Изобретение относится к пищевой промышленности, а именно к способу получения гидрированных масел для производства маргаринов, кондитерских, кулинарных жиров и жиров специального назначения.
Изобретение относится к способу получения олеиновой кислоты, согласно которому осуществляют гидрирование жирных кислот таллового масла на катализаторе Ni/на кизельгуре при температуре 140-160oC и давлении 0,5-1,0 МПа в течение 0,5-1,0 ч.

Изобретение относится к области катализаторов, в частности для гидрирования растительных масел и жиров, и может использоваться в пищевой, парфюмерной, нефтехимической и нефтеперерабатывающей промышленности.

Изобретение относится к масложировой промышленности и касается получения кондитерских жиров. .
Изобретение относится к масло-жировой промышленности и касается гидрирования растительных масел и жиров в производстве маргаринов, а парфюмерной промышленности и других технологиях, использующих в своих процессах твердофазные продукты реакций гидрирования растительных масел и жиров.

Изобретение относится к области катализаторов, применяемых, в частности, в гидрировании растительных масел и ненасыщенных жиров, и может использоваться в пищевой, парфюмерной, фармацевтической, нефтехимической и нефтеперерабатывающей промышленности
Изобретение относится к катализаторам гидрирования растительных масел и жиров

Изобретение относится к способу гидрирования растительных масел

Изобретение относится к масложировой промышленности, в частности к усовершенствованному способу гидрирования растительных масел и дистиллированных жирных кислот, и может использоваться в пищевой, парфюмерной, нефтехимической и нефтеперерабатывающей промышленности

Изобретение относится к способу регенерации никельсодержащего катализатора для проведения процессов гидрирования растительных масел в реакторах с перемешивающим устройством. Предлагаемый способ включает смешивание отработанного катализатора с тугоплавким жиром, формование полученной пасты в виде гранул и охлаждение до температуры окружающей среды. Данный способ регенерации позволяет восстановить химическую активность никелевого катализатора до 100%. 5 з.п. ф-лы, 2 табл., 7 пр.
Изобретение относится к способу гидрирования ненасыщенных жирных кислот для получения насыщенных жирных кислот, причем упомянутый способ включает гидрирование ненасыщенной жирной кислоты в присутствии водорода и никелевого катализатора на носителе, причем упомянутый никелевый катализатор содержит оксидный носитель, никель в количестве от 5 до 80 мас.%, рассчитанном как металлический никель на массу катализатора, и марганцевый промотор в количестве от 0,1 до 10 мас.%, рассчитанном как MnO2 на массу катализатора. Применение марганцевого промотора улучшает активность содержащих различные носители и полученных при различных температурах осаждения катализаторов гидрирования жирных кислот. 12 з.п. ф-лы, 2 табл., 4 пр.
Изобретение относится к способу гидрирования ненасыщенных жирных кислот для получения насыщенных жирных кислот, который включает гидрирование ненасыщенных жирных кислот в присутствии водорода и никелевого катализатора на подложке, содержащего оксидную подложку, от 5 до 80% масс. никеля в пересчете на атомарный никель от массы катализатора, от 0,1 до 10% масс. медного промотора в пересчете на атомарную медь от массы катализатора и от 1 до 10% масс. металла II группы в пересчете на оксид металла от массы катализатора. Никелевый катализатор, промотированный медью, дезактивируется медленнее в условиях реакции. 14 з.п. ф-лы, 3 пр.

Изобретение относится к окисленному и частично гидрогенизированному маслу или жиру для использования в качестве сырьевого масла или жира для пищевых продуктов, имеющему содержание трансизомера С18:2 от 10 до 60% по массе по отношению к общему содержанию составляющих жирных кислот и значение перекисного числа от 15 до 350 мг-экв/кг. Изобретение также относится к пищевой масляной или жировой композиции, содержащей окисленное и частично гидрогенизированное масло или жир, а также к способу производства указанного окисленного и частично гидрогенизированного масла или жира, включающему этап частичной гидрогенизации масла или жира до достижения содержания транс-изомера С18:2 от 10 до 60% по массе по отношению к общему содержанию составляющих жирных кислот и этап окисления масла или жира до достижения значения перекисного числа от 15 до 350 мг-экв/кг. Полученная пищевая композиция имеет гидрогенизированный аромат и вкус, аналогичный традиционным композициям, и долго сохраняющийся гидрогенизированный аромат при содержании транс-жирных кислот, сниженном до значения в обычном жидком салатном масле. 5 н. и 10 з.п. ф-лы, 9 табл., 28 пр.

Изобретение относится к масложировой промышленности. Способ получения масложирового продукта (саломаса), характеризующийся тем, что в нем готовят смесь из (а) одного или нескольких необязательно фракционированных натуральных масел, с начальным природным содержанием моно- и полиненасыщенных жирных кислот с длиной углеродной цепи 18 и больше, по меньшей мере, 50% и (б) одного или нескольких необязательно фракционированных масел, с начальным природным содержанием лауриновой кислоты больше 50%, таким образом, чтобы содержание лауриновой кислоты в полученной смеси составляло, по меньшей мере, 15%, а ее йодное число составляло 60÷120. Смесь, полученную на первом этапе, подвергают гидрированию до йодного числа, самое большее 10. Саломас, характеризующийся тем, что он получен вышеописанным способом. Способ получения масложирового продукта, характеризующийся тем, что в нем к саломасу добавляют вышеупомянутое растительное масло (а) до достижения йодного числа смеси 50÷110 и температуры плавления смеси 40÷50°С и осуществляют переэтерификацию. Заменитель молочного жира, характеризующийся тем, что он получен вышеописанным способом. Изобретение позволяет снизить расход водорода в расчете на единицу массы готовой продукции при осуществлении практически полного гидрирования; снизить количество теплоты, выделяемое в расчете на единицу массы реакционной смеси при полном гидрировании; упростить оборудование и уменьшение энергозатрат на обогрев трубопроводов, насосов и накопительных емкостей за счет снижения температуры плавления продукта гидрирования до 70°C и менее. 4 н. и 15 з.п. ф-лы, 2 ил., 9 табл., 3 пр.
Изобретение относится к способу изготовления катализатора и катализаторов, в особенности содержащих медь катализаторов, изготавливаемых данным способом. Раскрыт способ изготовления твердого измельченного материала, который является пригодным в качестве гетерогенного катализатора, включающий в себя стадии: формирования, по меньшей мере, одной суспензии оксида меди, включающей в себя твердые частицы оксида меди в жидкости; формирования, по меньшей мере, одной суспензии материала-носителя, включающей в себя твердые частицы материала-носителя в жидкости; объединения суспензии оксида меди и суспензии материала-носителя; подвергания объединенных суспензий воздействию механической энергии; отделения жидкости суспензии от твердых частиц в объединенной суспензии и подвергания отделенных твердых частиц воздействию стадии термического разложения. Твердый измельченный материал, изготовленный по способу, имеет поверхность по БЭТ более 150 м2/г, распределение размеров частиц такое, что D50 находится в диапазоне от 25-35 мкм и D50 через 60 минут обработки ультразвуком составляет, по меньшей мере, 30% от исходного значения. Применяют твердый измельченный материал в качестве катализатора для проведения химической реакции, выбранной из типа реакции, включающего в себя гидрирование, гидрогенолиз, аминирование и дегидрирование. Технический результат – создание твердых гетерогенных катализаторов, имеющих повышенную эффективность. 3 н. и 12 з.п. ф-лы, 6 пр., 1 табл.
Наверх