Биполярная перезаряжаемая электрохимическая батарея

Изобретение относится к биполярным батареям. Согласно изобретению биполярная батарея содержит положительный монополярный электродный узел, отрицательный монополярный электродный узел, по меньшей мере один биполярный электродный узел, размещенный пакетом между упомянутым положительным электродным узлом и упомянутым отрицательным электродным узлом, слой электролита, предусмотренный между каждой парой смежных электродных узлов, и прокладку, расположенную вокруг каждого из упомянутых слоев электролита, при этом каждый из упомянутых слоев электролита герметизирован посредством соответствующей ему прокладки и соответствующей ему пары смежных электродных узлов, причем прокладка выполнена с возможностью выравнивания каждого из упомянутых смежных электродных узлов. Биполярная батарея также включает в себя оболочку для сохранения уплотнений, созданных прокладками. Техническим результатом является улучшение герметизации. 2 н. и 16 з.п. ф-лы, 24 ил.

 

[0001] Данная заявка испрашивает приоритет предварительной заявки на патент США № 60/677512, поданной 3 мая 2005 года, которая включена сюда посредством ссылки во всей полноте.

Область техники

[0002] Данное изобретение относится в целом к батареям, а более точно к биполярным батареям с улучшенной герметизацией.

Предшествующий уровень техники

[0003] Биполярные батареи способны обеспечить повышенный ток разряда и большую разность потенциалов (напряжение) между своими внешними разъемами, чем стандартные намотанные или призматические батареи, и, следовательно, пользуются большим спросом для определенных видов применения. Традиционные батареи изготавливались либо как батареи намотанных элементов, которые имеют лишь два электрода, либо как стандартные батареи призматических элементов, которые имеют множество параллельных комплектов пластин. В обоих этих типах батарей электролит может находиться в любом месте внутри батареи. Конструкции с намотанными элементами и призматическими элементами обладают высокими электрическими сопротивлениями из-за того, что их токопроводы должны пересекать множество соединений и покрывать достаточно длинные расстояния для составления замкнутой цепи от одного элемента к другому при последовательном расположении.

[0004] В последнее время были разработаны биполярные батареи, которые обычно включают в себя последовательность пакетированных биполярных электродных узлов (БПУ), при этом каждый БПУ снабжен слоем активного материала положительного электрода и слоем активного материала отрицательного электрода, нанесенными на противоположные стороны токосъемника (см., например, публикацию заявки на патент США № 2004/0161667 А1 Фукузава (Fukuzawa) с соавторами, опубликованную 19 августа 2004 года, которая включена сюда посредством ссылки во всей полноте). Любые два смежных БПУ имеют между собой слой электролита для электрической изоляции токосъемников двух этих БПУ. Последовательная конфигурация биполярной батареи делает разность потенциалов различающейся между токосъемниками. Однако если токосъемники будут контактировать друг с другом или если общий электролит любых двух смежных БПУ будет разделяться с любым дополнительным БПУ, то напряжение и энергия батареи будут быстро падать (т.е. разряжаться) до нуля.

[0005] Соответственно было бы предпочтительно обеспечить биполярную батарею с улучшенной герметизацией электролита между смежными БПУ.

Сущность изобретения

[0006] Следовательно, задачей данного изобретения является обеспечение биполярной батареи с улучшенной герметизацией электролита между смежными биполярными электродными узлами.

[0007] В соответствии с изобретением предложена биполярная батарея, имеющая положительный монополярный электродный узел, отрицательный монополярный электродный узел, по меньшей мере один биполярный электродный узел, размещенный пакетом между положительным электродным узлом и отрицательным электродным узлом, и слой электролита, предусмотренный между каждой парой смежных электродных узлов. Данная биполярная батарея также включает в себя прокладку, расположенную вокруг каждого из слоев электролита, при этом каждый из слоев электролита герметизирован соответствующей ему прокладкой и соответствующей ему парой смежных электродных узлов.

Краткое описание чертежей

[0008] Вышеупомянутые и прочие преимущества изобретения станут более понятны после рассмотрения следующего подробного описания совместно с прилагаемыми чертежами, на которых подобные ссылочные позиции обозначают подобные элементы и на которых:

[0009] Фиг.1 изображает схематичный вид в поперечном сечении базовой структуры биполярного электродного узла (БПУ) согласно изобретению;

[0010] Фиг.2 изображает схематичный вид в поперечном сечении базовой структуры пакета БПУ по Фиг.1 согласно изобретению;

[0011] Фиг.3 изображает схематичный вид в поперечном сечении базовой структуры биполярной батареи с использованием пакета БПУ по Фиг.2 согласно изобретению;

[0012] Фиг.4 изображает схематичный вид сверху биполярной батареи по Фиг.3, взятый по линии IV-IV на Фиг.3;

[0013] Фиг.4А изображает схематичный вид сверху биполярной батареи по Фиг.3, взятый по линии IVA-IVA на Фиг.3;

[0014] Фиг.5 изображает принципиальную электрическую схему базового устройства биполярной батареи по Фиг.3-4А;

[0015] Фиг.6 изображает подробный схематичный вид в поперечном сечении отдельного участка биполярной батареи по Фиг.3-5.

[0016] Фиг.7 изображает схематичный вид сверху биполярной батареи по Фиг.3-6, взятый по линии VII-VII на Фиг.6;

[0017] Фиг.8 изображает схематичный вид сверху биполярной батареи по Фиг.3-7, взятый по линии VIII-VIII на Фиг.6;

[0018] Фиг.9 изображает схематичный вид сверху биполярной батареи по Фиг.3-8, взятый по линии IX-IX на Фиг.6;

[0019] Фиг.10 изображает схематичный вид в поперечном сечении некоторых деталей на первой стадии способа формирования биполярной батареи согласно предпочтительному варианту воплощения изобретения;

[0020] Фиг.11 изображает схематичный вид сверху деталей по Фиг.10, взятый по линии XI-XI на Фиг.10;

[0021] Фиг.12 изображает схематичный вид в поперечном сечении некоторых деталей на второй стадии способа формирования биполярной батареи согласно предпочтительному варианту воплощения изобретения;

[0022] Фиг.13 изображает схематичный вид сверху деталей по Фиг.12, взятый по линии XIII-XIII на Фиг.12;

[0023] Фиг.14 изображает схематичный вид в поперечном сечении некоторых деталей на третьей стадии способа формирования биполярной батареи согласно предпочтительному варианту воплощения изобретения;

[0024] Фиг.15 изображает схематичный вид сверху деталей по Фиг.14, взятый по линии XV-XV на Фиг.14;

[0025] Фиг.16 изображает схематичный вид в поперечном сечении некоторых деталей на четвертой стадии способа формирования биполярной батареи согласно предпочтительному варианту воплощения изобретения;

[0026] Фиг.17 изображает схематичный вид сверху деталей по Фиг.16, взятый по линии XVII-XVII на Фиг.16;

[0027] Фиг.18 изображает схематичный вид в поперечном сечении некоторых деталей на пятой стадии способа формирования биполярной батареи согласно предпочтительному варианту воплощения изобретения;

[0028] Фиг.19 изображает схематичный вид в поперечном сечении некоторых деталей на шестой стадии способа формирования биполярной батареи согласно предпочтительному варианту воплощения изобретения;

[0029] Фиг.20 изображает схематичный вид сверху деталей по Фиг.19, взятый по линии XX-XX на Фиг.19;

[0030] Фиг.21 изображает схематичный вид в поперечном сечении некоторых деталей на шестой стадии способа формирования биполярной батареи согласно альтернативному варианту воплощения изобретения;

[0031] Фиг.22 изображает схематичный вид сверху деталей по Фиг.21, взятый по линии XXII-XXII на Фиг.21;

[0032] Фиг.23 изображает схематичный вид сверху биполярной батареи согласно альтернативному варианту воплощения изобретения; и

[0033] Фиг.24 изображает схематичный вид в поперечном сечении биполярной батареи по Фиг.23, взятый по линии XXIV-XXIV на Фиг.23.

Подробное описание изобретения

[0034] В изобретении предлагается биполярная батарея, имеющая положительный монополярный узел-полюс (МПУ-полюс), отрицательный МПУ-полюс и по меньшей мере один биполярный узел (БПУ), расположенный, по существу, вертикально между ними. Каждый БПУ включает в себя электродный слой (например, проводящую подложку), имеющий две стороны. Положительный активный материал сформирован или расположен на первой стороне электродного слоя, а отрицательный материал сформирован или расположен на второй стороне электродного слоя. Биполярная батарея по изобретению также включает в себя слой электролита, имеющий электролит между каждым смежным электродным узлом (т.е. между каждым МПУ и смежным БПУ и между каждым БПУ и смежным БПУ) и барьер, который электрически изолирует смежные электродные узлы, между которыми расположен слой электролита. Дополнительно биполярная батарея по изобретению включает в себя прокладку, расположенную, по существу, вокруг каждого слоя электролита, для герметизации электролита из слоя электролита между этой прокладкой и смежными с ней двумя электродными слоями.

[0035] Изобретение будет далее описано со ссылкой на Фиг.1-24.

[0036] Фиг.1 изображает иллюстративный БПУ 2 в соответствии с одним вариантом воплощения настоящего изобретения, включающий в себя слой 4 активного материала положительного электрода, предусмотренный на первой стороне непроницаемой проводящей подложки 6, и слой 8 активного материала отрицательного электрода, предусмотренный на противоположной стороне непроницаемой проводящей подложки 6.

[0037] Как показано на Фиг.2, многочисленные БПУ 2 могут быть уложены стопкой, по существу, вертикально в пакет 20 с предусмотренным между двумя смежными БПУ 2 слоем 10 электролита, так что слой 4 положительного электрода одного БПУ 2 противоположен слою 8 отрицательного электрода смежного БПУ 2 через слой 10 электролита. Каждый слой 10 электролита предпочтительно включает в себя разделитель 9, который удерживает электролит 11 (см., например, Фиг.6). Разделитель 9 может электрически разделять слой 4 положительного электрода и смежный с ним слой 8 отрицательного электрода, в то же время позволяя осуществлять перенос ионов между электродными узлами для рекомбинации, как описано ниже более подробно.

[0038] Продолжая ссылаться на пакетированное состояние БПУ 2 на Фиг.2, компоненты, входящие в слой 4 положительного электрода и подложу 6 первого БПУ 2, слой 8 отрицательного электрода и подложку 6 второго БПУ 2, смежного с первым БПУ 2, и слой 10 электролита между первым и вторым БПУ 2, будут называться далее сегментом-элементом 22. Каждая непроницаемая подложка 6 каждого сегмента-элемента 22 совместно используется соответствующим смежным сегментом-элементом 22.

[0039] Как показано на Фиг.3 и 4, вместе с пакетом 20 из одного или более БПУ 2 могут быть предусмотрены положительный и отрицательный полюса для составления биполярной батареи 50 в соответствии с одним вариантом воплощения изобретения. На первом конце пакета 20 может быть расположен положительный МПУ 12, включающий в себя слой 14 активного материала положительного электрода, предусмотренный на одной стороне непроницаемой проводящей подложки 16, с предусмотренным между ними слоем электролита (т.е. слоем 10е электролита), так что слой 14 положительного электрода положительного МПУ 12 противоположен слою отрицательного электрода (т.е. слою 8d) БПУ (т.е. БПУ 2d) на первом конце пакета 20 через слой 10е электролита. На втором конце пакета 20 может быть расположен отрицательный МПУ 32, включающий в себя слой 38 активного материала отрицательного электрода, предусмотренный на одной стороне непроницаемой проводящей подложки 36, с предусмотренным между ними слоем электролита (т.е. слоем 10а электролита), так что слой 38 отрицательного электрода отрицательного МПУ 32 противоположен слою положительного электрода (т.е. слою 4а) БПУ (т.е. БПУ 2а) на втором конце пакета 20 через слой 10а электролита. При желании, МПУ 12 и 13 могут быть снабжены подходящими положительным и отрицательными электродными выводами 13 и 33 соответственно.

[0040] Следует отметить, что подложка и слой электрода каждого МПУ могут образовывать сегмент-элемент 22 с подложкой и слоем электрода смежного с ним БПУ 2 и слоем 10 электролита между ними, как показано на Фиг.3. Количество пакетированных БПУ 2 в пакете 20 может составлять один или более и определяется подходящим образом так, чтобы соответствовать желаемому напряжению батареи 50. Каждый БПУ 2 может обеспечивать любой желаемый потенциал, так что желаемое для батареи 50 напряжение может быть достигнуто путем фактического суммирования потенциалов, обеспечиваемых каждым БПУ-компонентом 2. Будет понятно, что все БПУ 2 не обязательно должны обеспечивать одинаковые потенциалы.

[0041] В одном подходящем варианте воплощения биполярная батарея 50 имеет такую конструкцию, что весь пакет 20 БПУ и соответствующие ее положительный и отрицательный МПУ 12 и 32 заключены (т.е. герметично уплотнены) в корпусе или оболочке 40 батареи при пониженном давлении. Проводящие подложки 6 и 36 МПУ (или, по меньшей мере, их соответствующие электродные выводы 13 и 33) могут быть выведены из корпуса 40 батареи так, чтобы смягчать воздействия снаружи при использовании и чтобы предотвратить ухудшение под действием окружающей среды. В МПУ 12 и 32 могут быть выполнены углубления 42 для низкопрофильного корпуса и плоской поверхности.

[0042] Для предотвращения перемешивания электролита первого сегмента-элемента 22 (см., например, электролит 11а сегмента-элемента 22а по Фиг.6А) с электролитом другого сегмента-элемента 22 (см., например, электролит 11b сегмента-элемента 22b по Фиг.6А) между смежными электродными узлами вместе со слоями 10 электролита предпочтительно укладывают стопкой прокладки для герметизации электролита внутри его отдельного сегмента-элемента 22. В одной подходящей конструкции, как показано на Фиг.3-4А, биполярная батарея по изобретению может включать в себя прокладку 60, расположенную по непрерывному контуру вокруг слоя 10 электролита и слоев 4, 8, 14 и 38 активного материала электродов каждого сегмента-элемента 22, для герметизации электролита между этой прокладкой и электродными узлами этого сегмента (т.е. БПУ-узлами или БПУ и МПУ, смежными с данной прокладкой) и для сохранения надлежащих зазоров между смежными проводящими подложками 6/16/32 этого сегмента.

[0043] Как будет описано ниже более подробно, при одном применимом подходе к верху и дну корпуса 40 может быть приложено давление в направлении стрелок Р1 и Р2 для сжатия и удерживания сегментов-элементов 22 и прокладок 60 в герметичной конфигурации, показанной на Фиг.3-4А. При другом применимом подходе давление может быть приложено к боковым сторонам корпуса 40 в направлении стрелок Р3 и Р4 для сжатия и удерживания сегментов-элементов 22 и прокладок 60 в герметичной конфигурации, показанной на Фиг.3 и 4. При еще одном применимом подходе давление может быть приложено к верху и дну корпуса 40 в направлении стрелок Р1 и Р2, а также давление может быть приложено к боковым сторонам корпуса 40 в направлении стрелок Р3 и Р4 для сжатия и удерживания сегментов-элементов 22 и прокладок 60 в герметичной конфигурации, показанной на Фиг.3-4А. Такая биполярная батарея 50 может включать в себя многочисленные сегменты-элементы 22, пакетированные и последовательно соединенные, как показано на Фиг.5, для обеспечения желаемого напряжения.

[0044] Обращаясь теперь к Фиг.6, там показан покомпонентный вид двух отдельных сегментов-элементов 22 батареи 50 по изобретению. Сегмент-элемент 22а включает в себя подложку 36 и слой 38 отрицательного электрода МПУ 32, слой 10а электролита, а также слой 4а положительного электрода и подложку 6а БПУ 2а. Сегмент-элемент 22b включает в себя подложку 6а и слой 8а отрицательного электрода БПУ 2а, слой 10b электролита, а также слой 4b положительного электрода и подложку 6b БПУ 2b. Как описано выше, каждый слой 10 электролита может включать в себя разделитель 9 и электролит 11. Прокладка 60 может быть предусмотрена в виде непрерывного контура вокруг слоя 10 электролита каждого сегмента-элемента 22, так что разделитель 9 и электролит 11 этого сегмента полностью герметизированы внутри пространства, ограниченного прокладкой 60 и прилегающими подложками этого отдельного сегмента-элемента.

[0045] Как показано на Фиг.6 и 7, прокладка 60а окружает слой 10а электролита так, что его разделитель 9а и электролит 11а полностью герметизированы внутри пространства, ограниченного прокладкой 60а, подложкой 36 и подложкой 6а сегмента-элемента 22а. Подобным же образом, как показано на Фиг.6 и 8, прокладка 60b окружает слой 10b электролита так, что его разделитель 9b и электролит 11b полностью герметизированы внутри пространства, ограниченного прокладкой 60b, подложкой 6а и подложкой 6b сегмента-элемента 22b. Более того, каждая прокладка может формировать уплотнение со слоями активного материала ее сегмента-элемента за счет контакта с их сторонами (см., например, прокладку 60а и стороны слоев 38 и 4а активного материала).

[0046] В одном подходящем варианте воплощения для создания лучшего уплотнения те области поверхности прокладки и смежных с ней подложек, которые контактируют друг с другом, могут быть выполнены с пазами. Как показано на Фиг.6-9, пазы 70 могут быть выполнены вдоль областей поверхности прокладок и подложек в точках их контакта друг с другом, тем самым увеличивая величину площади контакта и создавая путь большего сопротивления для любой жидкости, пытающейся нарушить уплотнение, созданное между прокладкой и подложкой. Площадь поперечного сечения паза 70 между поверхностями прокладки и конкретной подложки может иметь любую подходящую форму, такую как, например, синусоидальная (см., например, паз 70а на Фиг.6), V-образная (см., например, паз 70b на Фиг.6) или прямоугольная (см., например, паз 70с на Фиг.6). Более того, траектория паза 70 вокруг конкретной подложки ее сегмента-элемента может иметь любой желаемый рисунок, такой как, например, гладкий и непрерывный (см, например, паз 70а на Фиг.7), зигзагообразный и непрерывный (см., например, паз 70b на Фиг.8) или не непрерывный (см., например, паз 70с на Фиг.9). Описанные здесь формы и размеры пазов, выполненных между прокладками и подложками, являются лишь примерными, и при создании таких пазов могут быть использованы различные формы и размеры. Более того, в некоторых вариантах воплощения настоящего изобретения между прокладками и подложками может быть не предусмотрено пазов вообще.

[0047] Подложки, используемые для формирования электродных узлов по изобретению (например, подложки 6, 16 и 36), могут быть выполнены из любого подходящего проводящего и непроницаемого материала, такого как неперфорированная металлическая фольга. Подложка каждого БПУ может, как правило, иметь толщину от 1 до 5 мм, в то время как подложка каждого МПУ может иметь толщину от 5 до 10 мм и может действовать, например, в качестве полюсов батареи. Каждая подложка может быть изготовлена, например, из алюминиевой фольги, фольги из нержавеющей стали, содержащего никель и алюминий плакированного материала, содержащего медь и алюминий плакированного материала, никелированной стали, никелированной меди, никелированного алюминия, золота, серебра или любых подходящих их комбинаций. В некоторых вариантах воплощения каждая подложка может быть изготовлена из двух или более листов металлической фольги, приклеенных друг к другу.

[0048] Слои положительного электрода, предусмотренные на этих подложках для формирования электродных узлов по изобретению (например, слои 4 и 14 положительного электрода), могут быть выполнены из любого подходящего активного материала, такого как, например, гидроксид никеля (Ni(OH)2). Положительный активный материал может быть спечен и пропитан, покрыт водным связующим и спрессован, покрыт органическим связующим и спрессован, или же может удерживаться любым другим подходящим способом включения гидроксида никеля с другими вспомогательными химическими веществами в проводящую матрицу. Слой положительного электрода электродного узла может иметь частицы гидрида металла (МН), внедренные в матрицу Ni(OH)2, для снижения разбухания, что повышает срок службы при циклировании, для улучшения рекомбинации и для снижения давления внутри сегмента-элемента. МН может также присутствовать в связке пасты Ni(OH)2 для улучшения электропроводности внутри электрода и для способствования рекомбинации. МН может быть заменен другими химическими веществами, такими как, например, Pd или Ag.

[0049] Слои отрицательного электрода, предусмотренные на этих подложках для формирования электродных узлов по изобретению (например, слои 8 и 38 отрицательного электрода), могут быть выполнены из любого подходящего активного материала, такого как, например, гидрид металла (МН), Cd, Zn и Ag. Отрицательный активный материал может быть спечен, покрыт водным связующим и спрессован, покрыт органическим связующим и спрессован, или удержан любым другим подходящим способом включения МН с другими вспомогательными химическими веществами в проводящую матрицу. Сторона электрода МН может иметь Ni(OH)2, внедренный в матрицу МН, для стабилизации структуры, снижения окисления и увеличения срока службы при циклировании. Ni(OH)2 может быть заменен на другие химические вещества, такие как, например, Zn или Al.

[0050] Различные подходящие связующие, такие как, например, органическое связующее карбоксиметилцеллюлоза, Creyton каучук и политетрафторэтилен (ПТФЭ), могут быть смешаны со слоями активного материала для удержания этих слоев на их подложках.

[0051] Разделитель 9 каждого слоя 10 электролита биполярной батареи по изобретению может быть выполнен из любого подходящего материала, который электрически изолирует два ее смежных электродных узла, в то же время позволяя осуществить перенос ионов между двумя этими электродными узлами. Разделитель может содержать целлюлозные суперабсорбенты для улучшения заполнения и выполняет функцию резервуара для электролита с целью увеличения срока службы при циклировании, при этом разделитель может быть изготовлен, например, из полиабсорбирующего узорчатого материала (от англ. «polyabsorb diaper material»), посредством чего разделитель может предпочтительно высвобождать предварительно поглощенный электролит, когда к батарее подается заряд. В некоторых вариантах воплощения разделитель может иметь меньшую плотность и большую толщину, чем обычные элементы, так что межэлектродное расстояние (IES) может быть больше обычного и постепенно уменьшаться для сохранения разрядного тока (в единицах емкости) и емкости батареи на протяжении ее срока службы, а также для увеличения срока службы батареи.

[0052] Разделитель может быть тоньше, чем обычный материал, приклеенный к поверхности активного материала на электродных узлах, для снижения замыкания и улучшения рекомбинации. Этот материал разделителя может быть, например, напылен, нанесен или напрессован. В некоторых вариантах воплощения разделитель может иметь присоединенный к нему рекомбинационный агент. Этот агент может быть внедрен в структуру разделителя (это может быть осуществлено путем физического захватывания агента при мокром способе обработки с использованием ПВС для связывания этого агента с волокнами разделителя, или же агент может быть помещен в него, например, путем электроосаждения), или он может быть нанесен слоем на поверхность путем осаждения из паровой фазы. Этот материал может представлять собой Pb, Ag или любой другой агент, который эффективно способствует рекомбинации. Несмотря на то, что разделитель предпочтительно оказывает сопротивление, если подложки перемещаются друг к другу, разделитель может быть не предусмотрен в некоторых вариантах воплощения изобретения, в которых используются подложки, которые являются достаточно жесткими для того, чтобы не изгибаться.

[0053] Электролит 11 каждого слоя 10 электролита биполярной батареи по изобретению может состоять из любого подходящего химического соединения, которое ионизируется при растворении или плавлении с образованием электропроводящей среды. Электролит предпочтительно представляет собой стандартный электролит никель-металлогидридной (NiMH) аккумуляторной батареи, содержащий, например, гидрооксид лития (LiOH), гидрооксид натрия (NaOH), гидрооксид кальция (CaOH) или гидрооксид калия (KOH). Электролит может также содержать добавки для улучшения рекомбинации, такие как, например, Ag(OH)2. Электролит может также содержать RbOH, например, для улучшения рабочих характеристик при низкой температуре. В некоторых вариантах воплощения изобретения электролит (например, электролит 11) может быть заморожен внутри разделителя (например, разделителя 9), а затем растоплен после того, как батарея полностью собрана. Это позволяет вводить особо вязкие электролиты в пакет электродных узлов биполярной батареи до того, как прокладки сформируют, по существу, непроницаемые для жидкости уплотнения со смежными с ними подложками.

[0054] Прокладки 60 биполярной батареи по изобретению могут состоять из любого подходящего материала или комбинации материалов, при помощи которых можно эффективно герметизировать электролит внутри пространства, ограниченного прокладкой и смежных с ней подложкой. В некоторых вариантах воплощения прокладка может состоять из сплошного петлевого уплотнения, такого как, например, нейлон, полипропилен, целлофан, каучук, ПВС или любой другой непроводящий материал, либо их комбинация. Это кольцевое уплотнение может быть сжимаемым для улучшения герметизации. Сжатие может предпочтительно составлять примерно 5%, но уплотнение может обладать любой необходимой эластичностью для обеспечения хорошего уплотнения.

[0055] Альтернативно прокладки могут быть образованы из вязкой пасты, такой как эпоксидная смола, минеральный деготь или непроницаемый клей на основе КОН. В других вариантах воплощения прокладки, используемые в биполярной батарее по изобретению, могут быть образованы комбинацией сплошного петлевого уплотнения и вязкой пасты, используемой для улучшения уплотнения между прокладкой и смежными с ней подложками электродного узла. Альтернативно сами подложки могут быть обработаны вязкими пастами до того, как между ними будут помещены прокладки.

[0056] Как указано выше, одно из преимуществ использования биполярной конструкции батареи заключается в повышенном токе разряда батареи. Этот повышенный ток разряда позволяет использовать определенные менее коррозионные электролиты (например, путем удаления или снижения содержания компонента КОН в электролите), что может быть недостижимо в противном случае в призматических или намотанных конструкциях батарей. Эта обеспеченная биполярной конструкцией возможность использовать менее коррозионные электролиты позволяет применять некоторые эпоксидные смолы (например, эпоксидную смолу J-B Weld, которая не содержит электролитов КОН) при формировании уплотнения с помощью прокладок, которые в противном случае разъедались бы более коррозийными электролитами.

[0057] Как описано выше, верх и низ каждой прокладки может быть выполнен с выступом для совмещения с взаимообратным пазом на смежной с ней подложке. Более того, каждой прокладке может быть придана такая форма на ее внешней кромке, что при размещении в пакете она надевается поверх внешней кромки смежной с ней подложки (см., например, прокладку 60а относительно подложки 6а на Фиг.6 и 8).

[0058] Корпус или оболочка 40 биполярной батареи по изобретению может состоять из любого подходящего непроводящего материала, который герметизирует электродные узлы-полюсы (т.е. МПУ 12 и 32), открывая их проводящие электродные слои (т.е. слои 4 и 38) или их соответствующие выводы (т.е. выводы 13 и 33). Оболочка также предпочтительно поддерживает и сохраняет уплотнения между прокладками и смежными с ней подложками электродных узлов для изоляции электролитов внутри соответствующих им сегментов-элементов. Оболочка предпочтительно обеспечивает опору, необходимую для этих уплотнений, так что они могут сопротивляться расширению батареи при увеличении внутренних давлений в сегментах-элементах. Оболочка может быть изготовлена, например, из нейлона или любого другого полимера или эластичного материала, включая упрочненные композитные материалы, или термоусадочного материала, или из рифленого материала, такого как покрытая эмалью сталь или любой другой металл.

[0059] Продолжая ссылаться на Фиг.3, биполярная батарея 50 по изобретению включает в себя множество сегментов-элементов (например, сегментов-элементов 22а-22е), образованных МПУ 12 и 32 и пакетом БПУ (например, БПУ 2а-2d) между ними. В соответствии с некоторыми вариантами воплощения изобретения толщины и материалы каждой из подложек (например, подложек 6а-6d), слоев электродов (например, слоев 4а-4d и 14 положительных электродов и слоев 8а-8d и 38 отрицательных электродов), слоев электролита (например, слоев 10а-10е) и прокладок (например, прокладок 60а-60е) могут отличаться друг от друга, причем не только от одного сегмента-элемента к другому, но и внутри отдельного сегмента-элемента, таким образом создавая батареи с множеством разных преимуществ и рабочих характеристик.

[0060] Например, подложка 6а БПУ 2а может быть покрыта разными активными материалами вдоль их разных участков для формирования слоя 4а активного материала положительного электрода, как показано, например, на Фиг.4А самым внешним участком 4a', средним участком 4a'' и самым внутренним участком 4a'''. Каждый из участков 4a'-4a''' может быть, например, образован разными активными материалами и/или может иметь разную толщину.

[0061] Дополнительно помимо варьирования материалов и толщин в отдельной подложке, слое электрода, слое электролита или прокладке, как описано выше со ссылкой на подложку 6а на Фиг.4А, материалы и толщины подложек, слоев электродов, слоев электролита и прокладок могут изменяться по высоте пакета сегментов-элементов. В качестве примера электролит, используемый в каждом из слоев электролита батареи 50, может изменяться на основе того, насколько близок соответствующий его сегмент-элемент к середине пакета сегментов-элементов. Например, сегмент-элемент 22с (т.е. средний сегмент-элемент из пяти (5) сегментов 22 в батарее 50) может включать в себя слой электролита (т.е. слой 10с электролита), который образован первым электролитом, в то время как сегменты-элементы 22b и 22d (т.е. сегменты-элементы, смежные с полюсными сегментами-элементами в батарее 50) могут включать в себя слои электролита (т.е. слои 10b и 10d электролита соответственно), каждый из которых состоит из второго электролита, в то время как сегменты-элементы 22а и 22е (т.е. самые внешние сегменты-элементы в батарее 50) могут включать в себя слои электролита (т.е. слои 10а и 10е электролита соответственно), каждый из которых образован третьим электролитом. При использовании электролитов с более высокой проводимостью во внутренних пакетах сопротивление будет ниже, так что будет вырабатываться меньше теплоты, тем самым обеспечивая терморегулирование батареи за счет конструкции, а не за счет способов внешнего охлаждения.

[0062] Как указано выше, способ производства биполярной батареи согласно изобретению может в общем включать в себя этапы обеспечения МПУ и укладки на него одного или более БПУ со слоями электролита и прокладками между ними перед конечным накрыванием этого пакета другим МПУ противоположной полярности. Например, со ссылкой на Фиг.10 и 11 отрицательный МПУ 1032 может изначально быть оснащен непроницаемой проводящей подложкой 1036 и нанесенным на нее слоем 1038 активного материала отрицательного электрода. Подложка 1036 предпочтительно снабжена пазом 1070 по меньшей мере частично вокруг слоя 1038 отрицательного электрода.

[0063] Затем поверх подложки 1036 вокруг слоя 1038 электрода предпочтительно накладывают прокладку 1060 (см., например, Фиг.12 и 13). В той стороне прокладки 1060, которая контактирует с подложкой 1036, предпочтительно выполнен паз 1061 так, что пазы 1070 и 1061 выравнены, с созданием непрерывной области поверхности контакта между прокладкой и подложкой. Эти взаимообратные пазы способствуют самовыравниванию прокладки относительно МПУ, когда она накладывается на него, тем самым упрощая этот этап производства. После того как прокладка 1060 плотно наложена поверх МПУ 1032, внутренними боковыми стенками прокладки 1060 и участками МПУ 1032 таким образом образуется, по существу, непроницаемый для жидкости чашеобразный приемник (см., например, пространство 1080). Угол, образованный между внутренними боковыми стенками прокладки и участками электродного узла между ними (т.е. угол 1078 между внутренними боковыми стенками прокладки 1060 и участками МПУ 1032 между ними на Фиг.13), может представлять собой любой подходящий угол, включая прямые углы, тупые углы или острые углы.

[0064] Затем внутрь внутренних стенок прокладки 1060 поверх слоя 1038 отрицательного электрода могут быть помещены разделитель 1009 и электролит 1011 с образованием слоя 1010 электролита внутри пространства 1080 (см., например, Фиг.14 и 15). Когда используемый электролит является достаточно вязким, уплотнение, образованное между прокладкой и МПУ, позволяет легко вводить электролит в пространство 1080 без возможности утечки. Понятно, что в том случае, если электролит не является вязким при вводе в пакет (например, в том варианте воплощения, где электролит заморожен внутри разделителя), слой электролита может быть наложен на МПУ до того, как на него надета прокладка.

[0065] После того как разделитель 1009 и электролит 1011 слоя 1010 электролита были помещены внутрь пространства 1080, ограниченного прокладкой 1060 и МПУ 1032, на него может быть наложен первый БПУ 1102 (см., например, Фиг.16 и 17). Как показано на Фиг.16, БПУ 1102 включает в себя непроницаемую проводящую подложку 1106 с нанесенными на ее противоположные стороны слоем 1104 положительного электрода и слоем 1108 отрицательного электрода. Подложка 1106 предпочтительно снабжена пазом 1172 в одной из своих сторон по меньшей мере частично вокруг слоя 1104 положительного электрода. Слоем 1104 положительного электрода БПУ 1102, обращенным вниз к слою 1038 отрицательного электрода МПУ 1032, БПУ 1102 накладывают на прокладку 1060 так, что выполненный вверху прокладки 1060 паз 1062 и паз 1172 подложки 1106 выравниваются и создают непрерывную область поверхности контакта между прокладкой и подложкой. Эти взаимообратные пазы способствуют самовыравниванию БПУ относительно прокладки и, следовательно, МПУ, поскольку он наложен на нее, таким образом упрощая этот этап производства. Как только БПУ 1102 плотно наложен поверх прокладки 1060 и, таким образом, МПУ 1032, существует первый сегмент-элемент 1022. Более того, при этом подложкой 1106, подложкой 1036 и прокладкой 1060 образуется, по существу, непроницаемое для жидкости уплотнение вокруг слоя 110 электролита (и, таким образом, электролита 1011).

[0066] Следует отметить что, несмотря на то, что паз 1062 наверху прокладки 1060 (и, таким образом, паз 1172 внизу подложки 1106) может быть таких же самых размера, формы и вида (как в поперечном сечении, так и вокруг электродов), что и паз 1061 внизу прокладки 1060, эти пазы сверху и снизу прокладки могут отличаться друг от друга, например, как показано на Фиг.16. Подобным же образом, пазы, выполненные сверху и снизу каждой подложки электродных узлов, могут варьироваться друг относительно друга (см., например, пазы 1172 и 1170 БПУ 1102 на Фиг.16).

[0067] После того как создан первый сегмент-элемент 1022 путем наложения прокладки 1060, слоя 101 электролита и БПУ 1102 поверх МПУ 1032, как описано выше со ссылкой на Фиг.10-17, на него при желании могут быть наложены дополнительные БПУ подобным же образом. После того как уложено желаемое для биполярной батареи количество БПУ, на них должен быть наложен второй МПУ. Со ссылкой на Фиг.18 положительный МПУ 1012 может быть наложен поверх самого верхнего БПУ (в данном варианте воплощения предусмотрен лишь один БПУ, так что БПУ 1102 является самым верхним БПУ). Однако до того, как МПУ 1012 накладывается поверх БПУ 1102, может быть предусмотрена дополнительная прокладка (т.е. прокладка 1160 с нижним пазом 1161 и верхним пазом 1162) и слой электролита (т.е. слой 1110 электролита с разделителем 1109 и электролитом 1111), как описано выше для прокладки 1060 и слоя 1010 электролита.

[0068] Положительный МПУ 1012 предпочтительно снабжен непроницаемой проводящей подложкой 1016 и нанесенным на нее слоем 1014 активного материала положительного электрода. Подложка 1016 предпочтительно снабжена пазом 1072 по меньшей мере частично вокруг слоя 1014 положительного электрода. Слоем 1014 положительного электрода МПУ 1012, обращенным вниз к слою 1108 отрицательного электрода БПУ 1102, МПУ 1012 накладывают на прокладку 1160 так, что выполненный наверху прокладки 1160 паз 1162 и паз 1072 подложки 1016 выравниваются и создают непрерывную область поверхности контакта между прокладкой и подложкой. Эти взаимообратные пазы способствуют самовыравниванию положительного МПУ 1012 относительно прокладки 1160, а значит, и БПУ 1102, а значит, и прокладки 1060, а значит, и отрицательного МПУ 1032, поскольку она наложена на него. Этот признак самовыравнивания биполярной батареи по изобретению значительно упрощает этот этап производства. Как только МПУ 1012 плотно наложен поверх прокладки 1160 и, таким образом, БПУ 1102, существует второй сегмент-элемент (т.е. сегмент 1122). Более того, при этом подложкой 1016, подложкой 1106 и прокладкой 1160 образуется, по существу, непроницаемое для жидкости уплотнение вокруг слоя 1110 электролита (и, таким образом, электролита 1111).

[0069] После того как изготавливают пакет, включающий в себя положительный МПУ, отрицательный МПУ, по меньшей мере один БПУ между ними и прокладку и слой электролита между каждым из этих электродных узлов, тем самым формируя пакет сегментов-элементов, как описано выше со ссылкой на Фиг.10-18, могут быть установлены корпус или оболочка с герметизацией содержимого пакета для формирования функциональной биполярной батареи по изобретению. В первом варианте воплощения, как показано на Фиг.19 и 20, предусматривают предпочтительно жесткую оболочку 1040 вокруг пакета сегментов-элементов (т.е. сегментов-элементов 1022 и 1122) так, что слои полюсных электродов (т.е. слой 1014 положительного электрода и слой 1038 отрицательного электрода) обнажены (через проводящие подложки 1016 и 1036 соответственно), и так, что оболочка образует С-образное зажимное приспособление вокруг содержимого пакета для обеспечения биполярной батареи 1050. Давление оказывается оболочкой как вниз на подложку 1016 МПУ 1012 в направлении стрелок РD, так и вверх на подложку 1036 МПУ 1032 в направлении стрелок РU. Это давление предпочтительно поддерживает герметичную взаимосвязь между каждой прокладкой и смежными с ней подложками в пакете для создания, по существу, непроницаемых для жидкости барьеров вокруг каждого слоя электролита. Следует отметить, что сопряжение пазов, выполненных в прокладках и смежных с ними подложках, как описано выше в соответствии с некоторыми вариантами воплощения изобретения, снижает величину давления зажатия, которое требуется оказать в направлении стрелок РD и РU для создания, по существу, непроницаемых для жидкости прокладок.

[0070] В другом варианте воплощения, как показано на Фиг.21 и 22, оболочка 1040', предпочтительно изготовленная из уплотнительной обертки, усадочной обертки, уплотнительной ленты или любого другого подходящего деформируемого материала, выполнена вокруг пакета сегментов-элементов (т.е. сегментов-элементов 1022 и 1122) так, что слои полюсных электродов (т.е. слой 1014 положительного электрода и слой 1038 отрицательного электрода) обнажены (через проводящие подложки 1016 и 1036 соответственно), и так, что оборачиванием оболочки вокруг содержимого пакета обеспечивается лишь зажимное приспособление внешней кромки для обеспечения биполярной батареи 1050'. Пакет сегментов-элементов, завернутый в оболочку 1040', предпочтительно помещают внутрь жесткого контейнера 1060', площадь поперечного сечения которого подобна по форме, но слегка больше по сравнению с обернутым пакетом. После того как обернутый пакет помещен внутрь жесткого контейнера 1060', контейнер 1060' вокруг оболочки 1040' заполняют любой подходящей текучей средой 1070', которая расширяется под давлением, такой как, например, воздух, вода или пена. Контейнер затем может быть герметизирован, и в заключенной в нем текучей среде 1070' может быть повышено давление так, чтобы она расширялась для оказания давления внутрь на всю площадь поверхности оболочки 1040' в направлении стрелок РS для затягивания оболочки 1040' вокруг пакета сегментов-элементов. Это давление поддерживает герметизированную взаимосвязь между каждой прокладкой и смежными с ней подложками в пакете для создания, по существу, непроницаемых для жидкости барьеров вокруг каждого слоя электролита батареи 1050', которая может быть затем удалена из контейнера 1060'.

[0071] Несмотря на то, что каждый из вышеописанных и проиллюстрированных вариантов воплощения биполярной батареи изображает батарею, образованную укладыванием являющихся круглыми подложек в цилиндрическую батарею, следует отметить, что любая из широкого многообразия форм может быть применена для формирования подложек биполярной батареи по изобретению. Например, биполярная батарея по изобретению может быть сформирована укладыванием подложек с поперечными сечениями, которые являются прямоугольными, треугольными, шестиугольными или имеют любые другие формы, включая формы с одним или более пустыми пространствами в плоскости, такими как, например, «цифра 8» (см., например, батарею 2050, имеющую оболочку 2040', БПУ 2102 и МПУ 2012 и 2032, на Фиг.23 и 24).

[0072] Таким образом, видно, что биполярная батарея была оснащена положительным электродным узлом, отрицательным электродным узлом, по меньшей мере одним уложенным пакетом между ними биполярным электродным узлом, слоем электролита, отделяющим каждый смежный электродный узел, и прокладкой, расположенной вокруг каждого слоя электролита для создания уплотнения вокруг этого слоя электролита в сочетании со смежными с ней электродными узлами. Следует отметить, что описанные выше материалы, формы и размеры электродных узлов, слоев электролита и прокладок являются лишь иллюстративными. Специалистам в данной области техники будет очевидно, что изобретение может быть осуществлено на практике иначе, чем в описанных вариантах воплощения, которые приведены лишь в целях иллюстрации, а не ограничения, и изобретение ограничено лишь нижеследующей формулой изобретения.

1. Биполярная батарея, содержащая:
положительный монополярный электродный узел;
отрицательный монополярный электродный узел;
по меньшей мере один биполярный электродный узел, размещенный пакетом между упомянутым положительным электродным узлом и упомянутым отрицательным электродным узлом;
слой электролита, предусмотренный между каждой парой смежных электродных узлов; и
прокладку, расположенную вокруг каждого из упомянутых слоев электролита, при этом:
каждый из упомянутых слоев электролита герметизирован посредством соответствующей ему прокладки и соответствующей ему пары смежных электродных узлов и
упомянутая прокладка выполнена с возможностью выравнивания каждого из упомянутых смежных электродных узлов.

2. Биполярная батарея по п.1, в которой прокладка контактирует с каждой соответствующей парой смежных электродных узлов.

3. Биполярная батарея по п.2, в которой области поверхности контакта между прокладкой и каждой соответствующей парой смежных электродных узлов выполнены с взаимообратными пазом и выступом.

4. Биполярная батарея по п.2, дополнительно содержащая пазы, сформированные вдоль областей поверхности прокладки и каждой соответствующей пары смежных электродных узлов на их соответствующей точке контакта друг с другом, тем самым увеличивая величину площади контакта.

5. Биполярная батарея по п.4, в которой увеличенная величина площади контакта создает путь большего сопротивления для любой жидкости, пытающейся нарушить уплотнение, созданное между прокладкой и каждой соответствующей парой смежных электродных узлов.

6. Биполярная батарея по п.4, в которой пазы выровнены с созданием непрерывной области поверхности контакта между прокладкой и каждой соответствующей парой смежных электродных узлов.

7. Биполярная батарея по п.4, в которой пазы, сформированные вдоль областей поверхности прокладки и каждой соответствующей пары смежных электродных узлов на их точке контакта друг с другом, способствуют самовыравниванию прокладки относительно размещенных на ней пакетом электродных узлов.

8. Биполярная батарея по п.4, в которой пазы образуют такую траекторию вокруг прокладки и каждой соответствующей пары смежных электродных узлов, которая является по меньшей мере одной из плавной и непрерывной, зигзагообразной и непрерывной или не непрерывной.

9. Биполярная батарея по п.4, в которой поперечное сечение пазов является по меньшей мере одним из синусоидального, V-образного или прямоугольного.

10. Биполярная батарея, содержащая:
положительный монополярный узел (МПУ), имеющий положительный активный материал на слое положительного полюсного электрода;
отрицательный МПУ, имеющий отрицательный активный материал на слое отрицательного полюсного электрода;
по меньшей мере один биполярный узел (БПУ), расположенный, по существу, вертикально пакетом между упомянутым положительным МПУ и упомянутым отрицательным МПУ, причем каждый БПУ содержит:
слой биполярного электрода, имеющий две стороны,
положительный активный материал на первой стороне слоя биполярного электрода и
отрицательный активный материал на второй стороне слоя биполярного электрода;
слой электролита, содержащий материал-электролит, расположенный между каждым из упомянутых, по существу, вертикальных смежных полярных узлов, при этом слой электролита дополнительно содержит барьерный материал, который электрически изолирует слои электродов смежных полярных узлов, между которыми расположен этот слой электролита; и
уплотнительное кольцо, расположенное, по существу, вокруг каждого слоя электролита, причем упомянутое уплотнительное кольцо выполнено с возможностью выравнивания каждого из упомянутых смежных полярных узлов, при этом полярные узлы, слои электролита и уплотнительные кольца расположены пакетированной структурой, в которой положительный МПУ расположен на одном конце этой структуры, а отрицательный МПУ расположен на противоположном конце этой структуры, и при этом на пакетированную структуру оказывается сила зажатия для того, чтобы заставить уплотнительные кольца располагаться, по существу, вокруг слоев электролита, положительного активного материала по меньшей мере одного полярного узла и отрицательного активного материала смежного полярного узла, тем самым герметизируя слой электролита.

11. Биполярная батарея по п.10, в которой уплотнительное кольцо контактирует с каждой соответствующей парой смежных полярных узлов.

12. Биполярная батарея по п.11, в которой области поверхности контакта между уплотнительным кольцом и каждой соответствующей парой смежных полярных узлов выполнены с взаимообратными пазом и выступом.

13. Биполярная батарея по п.11, дополнительно содержащая пазы, сформированные вдоль областей поверхности уплотнительного кольца и каждой соответствующей пары смежных полярных узлов на их соответствующей точке контакта друг с другом, тем самым увеличивая величину площади контакта.

14. Биполярная батарея по п.13, в которой увеличенная величина площади контакта создает путь большего сопротивления для любой жидкости, пытающейся нарушить уплотнение, созданное между уплотнительным кольцом и каждой соответствующей парой смежных полярных узлов.

15. Биполярная батарея по п.13, в которой пазы выровнены с созданием непрерывной области поверхности контакта между уплотнительным кольцом и каждой соответствующей парой смежных полярных узлов.

16. Биполярная батарея по п.13, в которой пазы, сформированные вдоль областей поверхности уплотнительного кольца и каждой соответствующей пары смежных полярных узлов на их точке контакта друг с другом, способствуют самовыравниванию уплотнительного кольца относительно размещенных на ней пакетом полярных узлов.

17. Биполярная батарея по п.13, в которой пазы образуют такую траекторию вокруг уплотнительного кольца и каждой соответствующей пары смежных полярных узлов, которая является по меньшей мере одной из плавной и непрерывной, зигзагообразной и непрерывной или не непрерывной.

18. Биполярная батарея по п.13, в которой поперечное сечение пазов является по меньшей мере одним из синусоидального, V-образного или прямоугольного.



 

Похожие патенты:

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей (НВАБ) преимущественно в автономных системах электропитания искусственных спутников Земли (ИСЗ).

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей преимущественно в автономных системах электропитания геостационарных искусственных спутников Земли (ИСЗ).

Изобретение относится к электротехнике и касается металлгазовых химических источников тока, в частности никель-водородных аккумуляторных батарей (НВАБ). .

Изобретение относится к электротехнике и касается металл-газовых химических источников тока, в частности никель-водородных аккумуляторов (НВА). .

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей преимущественно в автономных системах электропитания геостационарных ИСЗ.

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей в автономных системах электропитания.

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации металл-водородных аккумуляторных батарей преимущественно в автономных системах электропитания.

Изобретение относится к электротехнической промышленности и может быть использовано при разработке герметичных никель-водородных аккумуляторов (НВА) с длительным циклическим ресурсом.

Изобретение относится к электротехнике, а именно к способу изготовления малогабаритных химических источников тока - никель-водородных аккумуляторов. .

Изобретение относится к способу и установке для соединения ушек пластин аккумулятора (положительных и отрицательных пластин) с помощью мостов и вставки полученных таким образом пакетов из пластин аккумулятора, ушки которых соединены друг с другом мостами, в аккумуляторные ящики.

Изобретение относится к электротехнической промышленности, производству аккумуляторных батарей. .

Изобретение относится к сборному аккумулятору из плоских элементов, выводы которых соединены ультразвуковой сваркой. .

Изобретение относится к аккумуляторной батарее с усовершенствованной защитой, а также к защитному устройству, используемому для этого. .

Изобретение относится к области создания гальванических элементов. .

Изобретение относится к электрической промышленности и может быть использовано при производстве аккумуляторов с крышками и корпусами из термопластичных материалов.

Изобретение относится к области химических источников тока и может быть использовано при конструировании и производстве герметизированных свинцовых аккумуляторов.

Изобретение относится к электрохимическим элементам, предназначенным для использования в портативных электроприборах. .
Наверх