Способ изготовления спеченных пористых изделий из псевдосплава на основе вольфрама

Изобретение относится к области порошковой металлургии, в частности к способам изготовления пористых изделий из композиционного псевдосплава на основе вольфрама. Может использоваться для изготовления материалов, способных эффективно рассеивать механическую энергию при динамических нагрузках. На основе вольфрамового порошка со средним размером частиц по Фишеру 0,8-3,9 мкм готовят шихту состава W92,3-Ni1,3-Cu6,4% по массе. В шихту добавляют порообразователь - двууглекислый аммоний дисперсностью менее 0,071 мм и прессуют при давлении не более 150 МПа. Затем порообразователь удаляют и спекают при температуре 1080-1300°С в течение 1-2 часов. Полученный материал обладает пористостью 55-56%, высокой прочностью на сжатие, а также отсутствует трещинообразование в спеченных крупногабаритных заготовках. 2 ил.

 

Заявляемое изобретение относится к области порошковой металлургии, в частности к способам изготовления пористых изделий из сплавов на основе вольфрама.

Известен способ получения пористых вольфрамовых дисков, заключающийся в том, что в качестве порообразователя в шихту вводят от 2 до 15 вес.% фторидов лантана или иттрия (а.с. №406639; МПК B22F 1/00, B22F 3/12, опубл. в БИ №46 21.11.1973 г.).

Недостаток этого способа заключается в высокой термической стойкости фторидов лантана и иттрия и, как следствие, спекание происходит при высоких температурах (более 2000°С), что не позволяет получить композиционные псевдосплавы на основе вольфрама типа вольфрам-медь-никель с высокой пористостью 55-60%.

Наиболее близким по технической сущности является способ получения высокопористых вольфрам-медных материалов, полученных жидкофазным спеканием (В.В.Скороход, С.М.Солонин, Л.И.Чернышев. Высокопористые вольфрам - медные материалы, полученные жидкофазным спеканием. - Порошковая металлургия, 1978, №2, с.17-21). Данный способ включает смешивание порошков вольфрама марки ВЧ с электролитической медью марки ПМЭ-1, в которые к меди добавляют 20 вес.% никеля марки ПНК-1. Металлические порошки смешивали с порошком двууглекислого аммония с размером частиц 100 мкм, прессовка содержала 52 об.% этого порообразователя. После прессования микропористость (пористость областей с мелкими естественными порами, поры в объемах, занятых металлическим порошком), составляла 50%. Из прессовок при температуре 200°С в среде водорода отгонялся порообразователь, что обеспечивало перед спеканием относительный объем крупных пор, образованных наполнителем (макропористость), который составлял 52%. Жидкофазное спекание проводили в среде водорода при температуре 1250°С в течение 1 часа. После спекания пористость образцов состава WNi - 6,4 Сu составила 60%.

К недостаткам способа необходимо отнести отсутствие оптимизации технологических режимов для улучшения качества пористого материала, а именно повышения предела прочности при сжатии и создания условий для исключения трещинообразования в процессе изготовления крупногабаритных заготовок.

Задачей изобретения является повышение качества заготовки, а именно увеличение прочности, ликвидация трещинообразования в спеченных крупногабаритных заготовках за счет оптимизации технологических режимов получения.

Технический результат, достигаемый при использовании предлагаемого изобретения, следующий:

- получение пористого сплава на основе W-Ni-Cu с пористостью 55-56% (плотность 7,8-8,0 г/см3);

- достижение предела прочности на сжатие пористого спеченного вольфрамового сплава более 150 Н/мм2;

- отсутствие трещин в сплаве в процессе изготовления;

- получение из сплава крупногабаритных изделий.

Технический результат достигается тем, что в предлагаемом способе изготовления спеченных пористых изделий из псевдосплава на основе вольфрама, включающем приготовление шихты состава W92,3-Ni1,3-Cu6,4 (% по массе) с добавлением порообразователя двууглекислого аммония, прессование, удаление порообразователя, жидкофазное спекание, используют вольфрамовый порошок со средним размером частиц по Фишеру 0,8-3,9 мкм и порообразователь дисперсностью менее 0,071 мм, прессование шихты производят давлением не более 150 МПа, а спекание проводят при температуре 1080-1300°С в течение 1-2 часов.

На фигуре 1 изображены диаграммы уплотняемости вольфрамовой шихты с порообразователем NH4HCO3 с учетом дисперсности порошка вольфрама.

На фигуре 2 изображена зависимость пористости спеченных образцов состава W92,3-Ni1,3-Cu6,4 (% по массе) от температуры спекания и дисперсности исходного порошка вольфрама (марки W3.9, W1.3 и W0.8).

Сущностью изобретения является способ изготовления пористых изделий из сплавов на основе вольфрама, включающий в себя:

- подготовку порообразователя NН4НСО3 (обезвоживание в вакууме 2 Па при температуре 35-40°С в течение не менее 5 час, просеивание через сито 0,071 мм);

- приготовление шихты путем перемешивания порошков вольфрама, никеля, меди и порообразователя в биконическом смесителе в течение не менее 10 час в нейтральной атмосфере;

- гидростатическое прессование шихты давлением не более 150 Н/мм2 в эластичной пресс-форме в нейтральной атмосфере;

- транспортировку прессовки с операции гидростатического прессования на технологическую операцию последующего удаления порообразователя, связанную с контактом прессовки с воздушной атмосферой в течение не более 3 мин;

- удаление порообразователя в среде водорода по режиму: нагрев со скоростью не более 2°С/мин до 200°С; выдержка не менее 2 час;

- спекание заготовки в среде водорода по режиму: нагрев от 200°С до температуры (1080-1300°С) со скоростью не более 10°С/мин; выдержка при данной температуре не менее 1 час;

- охлаждение в среде водорода вместе с печью.

Подготовка порообразователя NH4HCO3 по вышеуказанной технологии позволяет получить ультрамелкий обезвоженный продукт, который при дальнейшем нагреве равномерно удаляется из прессовки, оставляя после себя ультратонкую макропористость.

Перемешивание металлических порошков по вышеуказанной технологии обеспечивает однородность шихты. После 10 часов перемешивания со v=50 об/мин химический состав шихты стабилизируется на уровне W - 84,5±0,1; Ni - 1,20±0,05; Сu - 5,90±0,05; NH4CO3 - 8,4±0,1 (% по массе).

Загрузка шихты в эластичную пресс-форму производится в боксе с контролируемой нейтральной атмосферой. После разгрузки пресс-формы прессовка не должна находиться в контакте с воздушной атмосферой более 3 мин, так как начинается самопроизвольный разогрев и растрескивание прессовки.

В ходе гидростатического прессования усилием не более 150 Н/мм2 шихта, включая порообразователь, уплотняется до пористости 25-30%, что обеспечивает транспортабельность, и технологичность прессовки. Прессование большим давлением приводит к перепрессовке (появлению трещин) заготовки. Гидростатическое прессование обеспечивает равномерное распределение плотности по объему прессовки, что приводит к минимальной разноплотности после спекания.

Ниже приведен пример осуществления способа.

Цель: изготовление заготовок диаметром ⌀60 мм, высотой h 120 мм из композиционного псевдосплава состава W92,3-Ni1,3-Cu6,4 (% по массе) с пористостью 55-56%.

В качестве порообразователя использовался аммоний углекислый кислый NH4HCO3, который обезвоживали в вакууме 2 Па в вакуумном сушильном шкафу при температуре 35-40°С в течение 5 часов и просеивали через сито 0,071 мм. Приготавливали шихту состава W84,5-Ni1,20-Cu5,90 - NH4HCO3 8,4% (по массе) механическим смешиванием в биконическом смесителе (в отношении с металлическими шарами 1:10 (шары)) при скорости вращения 50 об/мин в течение 10 часов. Просеивали шихту через сито 0,071 мм. Шихту загружали в эластичную пресс-форму в атмосфере аргона, затем пресс-форму герметизировали. Прессование осуществляли гидростатическим методом давлением 150 Н/мм2. Разгрузку пресс-формы осуществляли в атмосфере аргона. Затем прессовку помещали в печь сопротивления с контролируемой водородной атмосферой в течение минимально возможного времени нахождения прессовки на воздухе. Удаление порообразователя из прессовки проводилось в среде водорода со скоростью нагрева 2°С/мин до температуры 200°С и выдержке в течение 2 часов. Затем проводили нагрев со скоростью 10°С/мин до температуры 1080-1300°С и при этой температуре выдерживали 1-2 часа. Режим корректировался в зависимости от дисперсности (средний размер частиц порошка по Фишеру) используемого вольфрамового порошка. Для вольфрамового порошка W0,8мкм - 1080°С, 1 час; для W1,3 мкм -1200°С, 1,5 часа; для W3,9мкм - 1300°С, 2 часа. Охлаждение заготовок проводили вместе с печью.

Пористость заготовок определяли методом гидростатического взвешивания. Предел прочности на сжатие изучали на цилиндрических образцах (⌀/h=1/2), изготовленных по прототипу и по заявленному способу. При одинаковой пористости 55% предел прочности на сжатие по заявленному способу составляет 160-164 Н/мм2, а по прототипу - 100-104 Н/мм2.

Таким образом, получение спеченных пористых изделий из композиционного псевдосплава W-Ni-Cu заявленным способом позволило улучшить свойства изделий и расширить область применения в качестве демпфера ударной волны.

Способ изготовления спеченных пористых изделий из псевдосплава на основе вольфрама, включающий приготовление шихты состава W92,3-Ni1,3-Cu6,4% по массе с добавлением порообразователя двууглекислого аммония, прессование, удаление порообразователя и жидкофазное спекание, отличающийся тем, что используют вольфрамовый порошок со средним размером частиц по Фишеру 0,8-3,9 мкм и порообразователь дисперсностью менее 0,071 мм, прессование шихты производят давлением не более 150 МПа, а спекание проводят при температуре 1080-1300°С в течение 1-2 ч.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к способам металлотермического получения ферровольфрама. .
Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе интерметаллида молибдена. .

Изобретение относится к композиции металлических сплавов, а именно к износо-, эрозионно- и химически стойкому материалу на основе вольфрама, легированному углеродом, причем углерод в пересчете на полный вес материала составляет от 0.01 вес.% до 0.97 вес.%.
Изобретение относится к порошковой металлургии, в частности к композиционным материалам для металлокерамических спаев. .
Изобретение относится к металлургии и может быть использовано в качестве материалов для изготовления обшивки летательных аппаратов. .
Изобретение относится к металлургии и может быть использовано для изготовления оснастки и инструмента металлообрабатывающей промышленности, деталей оборудования нефтяной и стекольной промышленности.
Изобретение относится к металлургии и может быть использовано в качестве материалов вставок критических сечений сопел, деталей ракет, обшивки летательных аппаратов.
Сплав // 2335563
Изобретение относится к области металлургии и касается составов сплавов, которые могут быть использованы для изготовления деталей технологического оборудования производства пластмасс.
Изобретение относится к области металлургии, в частности к составам лигатур, используемых в производстве сплавов на основе титана. .

Изобретение относится к сплавам для электронной техники и приборостроения, в частности для термоэмиттеров поверхностно-ионизационных детекторов обнаружения и количественного определения содержания органических соединений - аминов, гидразинов и их производных.
Изобретение относится к области порошковой металлургии, в частности к получению композиционных материалов на металлической матрице, армированной квазикристаллами Al-Cu-Fe.

Изобретение относится к области композиционных инструментальных материалов и может быть использовано для изготовления инструментов различного назначения с повышенными механическими характеристиками.

Изобретение относится к порошковой металлургии, а именно к производству листов пеноалюминия, и может быть использовано в различных отраслях машиностроения. .
Изобретение относится к порошковой металлургии, в частности к порошковым коррозионно-стойким материалам на основе железа. .
Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе интерметаллида молибдена. .
Изобретение относится к области порошковой металлургии, а именно к способу получения металлических композиционных материалов с матрицей из магния или его сплавов, армированной тугоплавкими наполнителями.
Изобретение относится к порошковой металлургии, в частности к способам получения композиционных материалов на основе карбосилицида титана. .
Изобретение относится к получению высокопористых материалов. .

Изобретение относится к порошковой металлургии, а именно к получению пористого титана. .

Изобретение относится к порошковой металлургии, в частности к получению металлического порошка с пониженным содержанием кислорода. .
Наверх