Способ определения показателя преломления поверхностной электромагнитной волны инфракрасного диапазона

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных твердых тел с отрицательной действительной частью диэлектрической проницаемости. Способ включает измерение интенсивности поверхностной электромагнитной волны (ПЭВ) после пробега волной двух различных расстояний по плоской поверхности образца и глубины проникновения поля ПЭВ в окружающую образец среду. Расчет действительной и мнимой частей показателя преломления проводят по формулам:

где к1 - действительная часть показателя преломления ПЭВ; к2 - мнимая часть показателя преломления ПЭВ; k0=2π/λ, λ - длина объемной волны, генерирующей ПЭВ, в вакууме; δ - глубина проникновения поля ПЭВ в окружающую образец среду с диэлектрической проницаемостью ε; I1 и I2 - интенсивность поля ПЭВ после пробега волной расстояний l1 и l2 (причем l2>l1). Изобретение позволяет повысить точность определения действительной части показателя преломления поверхностной волны. 1 ил.

 

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных твердых тел с отрицательной действительной частью диэлектрической проницаемости, способных направлять поверхностные электромагнитные волны (ПЭВ) [1] в инфракрасном (ИК) диапазоне, а также - для оптической спектроскопии переходного слоя и контроля качества поверхности таких тел.

Известен способ определения показателя преломления ПЭВ ИК-диапазона, включающий измерение интенсивности ПЭВ после пробега волной двух различных расстояний по плоской поверхности образца, измерение периода интерферограммы, регистрируемой на нормали к поверхности в плоскости падения генерирующего ПЭВ излучения и образованной в результате сложения двух объемных волн: реперной и порожденной ПЭВ при ее дифракции на краю образца, а также - расчет искомого показателя преломления по результатам измерений [2]. Основными недостатками способа являются большая продолжительность и низкая точность измерений, что обусловлено следующими причинами: 1) необходимостью изменения расстояния, пробегаемого ПЭВ в процессе измерений; 2) зависимостью диаграмм направленности интерферирующих волн от особенностей дифракционных элементов - края экрана, преобразующего падающее излучение в ПЭВ и порождающего первую объемную волну, и края образца, преобразующего ПЭВ во вторую объемную волну; 3) кривизной волновых фронтов интерферирующих волн, что приводит к зависимости периода и контраста интерферограммы от расстояния до поверхности образца.

Известен способ определения показателя преломления ПЭВ ИК-диапазона, включающий измерение интенсивности ПЭВ после пробега волной двух различных расстояний по плоской поверхности образца, измерения периода интерферограммы, регистрируемой в плоскости, параллельной поверхности образца, направляющей ПЭВ, и образованной в результате сложения двух сонаправленных объемных волн: реперной и волны, порожденной ПЭВ на перемещаемом вдоль трека ПЭВ наклонном зеркале, а также - расчет искомого показателя преломления по результатам измерений [3]. Основной недостаток способа - большая продолжительность измерений, что обусловлено необходимостью перемещения зеркала над образцом на макроскопическое расстояние (несколько сантиметров), на котором ПЭВ приобретает набег фазы порядка 2π.

Наиболее близким по технической сущности к заявляемому способу является способ определения показателя преломления ПЭВ ИК-диапазона, включающий измерение интенсивности ПЭВ после пробега волной двух различных расстояний по плоской поверхности образца, измерение периода интерферограммы, образованной в результате сложения двух пучков лучей исходной ПЭВ и регистрируемой в плоскости, параллельной поверхности образца, а также - расчет искомого показателя преломления по результатам измерений [4]. Основной недостаток способа - низкая точность определения действительной части показателя преломления ПЭВ, что обусловлено сравнимостью периода интерферограммы с размером чувствительного элемента (пикселя) линейки фотоприемников, регистрирующей интерференционную картину.

Техническим результатом, на достижение которого направлено изобретение, является повышение точности определения действительной части показателя преломления поверхностной волны.

Сущность изобретения заключается в том, что в способе определения показателя преломления ПЭВ ИК-диапазона, включающем измерение интенсивности ПЭВ после пробега волной двух различных расстояний по плоской поверхности образца и расчет значения комплексного показателя преломления по результатам измерений, дополнительно измеряют глубину проникновения поля ПЭВ в окружающую образец среду, а расчет действительной и мнимой частей показателя преломления производят по формулам:

где к1 - действительная часть показателя преломления ПЭВ; к2 - мнимая часть показателя преломления ПЭВ;

λ - длина объемной волны, генерирующей ПЭВ, в вакууме;

δ - глубина проникновения поля ПЭВ в окружающую образец среду с диэлектрической проницаемостью ε;

I1 и I2 - интенсивность поля ПЭВ после пробега волной расстояний l1 и l2 (причем l2>l1).

Повышение точности определения действительной части показателя преломления ПЭВ в предлагаемом способе достигается в результате отказа от интерферометрических измерений и проведения вместо них измерения глубины проникновения поля ПЭВ в окружающую образец среду за время одного импульса возбуждающего ПЭВ излучения.

Покажем, каким образом можно определить к1 не прибегая к интерферометрическим измерениям (как это необходимо делать в способе прототипе). Известно, что глубину проникновения поля ПЭВ в окружающую образец среду с диэлектрической проницаемостью ε можно рассчитать по формуле [1]: где

Решив систему двух последних уравнений относительно к1, получим формулу (1). Таким образом, измерив δ и определив к2, по изменению интенсивности ПЭВ на расстоянии (l2-l1), можно определить величину к1 не прибегая к интерферометрии.

На чертеже приведена схема устройства, реализующего предлагаемый способ, где цифрами обозначены: 1 - источник p-поляризованного монохроматического излучения, 2 - элемент преобразования объемного излучения в ПЭВ, 3 - образец, способный направлять ПЭВ и имеющий плоскую поверхность, 4 - уголковое зеркало, установленное на поверхности образца и ориентированное своими отражающими гранями перпендикулярно к ней, 5 - фокусирующие геодезические линзы, 6 - линейки фотоприемников, размещенные в фокальных плоскостях линз 5 перпендикулярно поверхности образца 3 и сопряженные с измерительными приборами G1 и G2, электрические сигналы с которых поступают в блок обработки информации 7.

Устройство работает и способ осуществляется следующим образом. Излучение источника 1 направляют на элемент 2, преобразующий объемную волну в параллельный пучок лучей ПЭВ на плоской поверхности образца 3. Исходный пучок ПЭВ достигает зеркала 4, разделяющего его на два одинаковых по энергии новых пучка ПЭВ. Эти пучки распространяются в противоположных направлениях и, пройдя различные расстояния l1 и l2, достигают линз 5. Пучки ПЭВ концентрируются на приемники соответствующих линеек 6 и порождают в них электрические сигналы, пропорциональные интенсивности поля ПЭВ на расстоянии данного приемника от поверхности образца 3. Сигналы измеряются приборами G1, G2 и поступают в блок 7, который вначале интегрирует сигналы с каждой линейки в отдельности и таким образом получает значения I1 и I2. Затем, располагая значениями I1, I2, l1, l2 и λ, блок 7 по формуле (2) рассчитывает к2. На втором этапе расчетов блок 7 по известным координатам приемников линеек 6 и значениям сигналов, поступивших с них, рассчитывает величину 6 и, располагая известной величиной ε и вычисленным к2, по формуле (1) определяет значение к1 Отметим, что устройство не содержит подвижных элементов и это позволяет выполнять измерения за время одного импульса излучения, возбуждающего ПЭВ.

В качестве примера применения заявляемого способа рассмотрим возможность определения показателя преломления ПЭВ, генерируемых на поверхности плоского алюминиевого образца, размещенного в воздухе (ε=1,00054), лазерным излучением с λ=110 мкм и длительностью импульсов 3 мкс [2]. Диаметр d поперечного сечения пучка излучения источника выберем равным 2,0 см, а в качестве элемента преобразования 2 - планарную дифракционную решетку с периодом 500 мкм и амплитудой гофра 100 мкм, длина и ширина которой не меньше d. Положим, что линзы 5 выполнены в виде сферических углублений в поверхности образца 3, имеющих диаметр 25 мм и образующий радиус, равный 20 мм; фокусное расстояние такой линзы равно 30 мм [5]. В качестве приемников излучения выберем линейки 6 длиной 16 мм с размером пикселя, равным 1 мкм (как в прототипе).

Пусть от граней зеркала 4 до линеек 6 пучки ПЭВ проходят расстояния l1=50 мм и l2=150 мм, при этом отношение сумм сигналов, поступающих в блок 7 от приборов G1 и G2, равно 1,95. Тогда согласно формуле (2) величина мнимой части показателя преломления такой ПЭВ к2=1,17×10-4.

Далее предположим, что отношение IN/Io=0,32 (где Io - интенсивность поля ПЭВ, измеренная расположенным на уровне поверхности образца приемником любой из матриц, IN - интенсивность поля ПЭВ на уровне наиболее удаленного от поверхности образца приемника любой из матриц; в нашем случае это расстояние zmax=16 мм). Тогда глубина проникновения поля ПЭВ в воздух равна: .

Подставив в (1) найденные значения δ и к2, получим к1=1,0003. Окончательно имеем, что показатель преломления ПЭВ в рассматриваемом примере к=1,0003+1,17×10-4.

Оценим точность определения к1 заявляемым способом. Поскольку размер одного фотоприемного пикселя равен 1 мкм, то относительная ошибка определения к1 составит 10-4, т.е. 0,01%. При прочих равных условиях, точность определения к1 способом, взятым в качестве прототипа, на порядок меньше и составляет всего 0,1%.

Таким образом, измерение глубины проникновения поля ПЭВ в окружающую образец среду вместо измерения периода интерферограммы, полученной с участием ПЭВ, позволяет на порядок повысить точность определения действительной части комплексного показателя преломления ИК ПЭВ.

Источники информации

1. Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред / Под ред. В.М.Аграновича и Д.Л.Миллса. - М.: Наука, 1985. - 525 с.

2. Bogomolov G.D., Jeong U.Y., Zhizhin G.N., Nikitin A.K. et al. Generation of surface electromagnetic waves in terahertz spectral range by free-electron laser radiation // Nuclear Instruments and Methods in Physics Research (A), 2005, V.543, No.1, p.96-101.

3. Жижин Г.Н., Никитин А.К., Рыжова ТА. Способ определения диэлектрической проницаемости металлов в инфракрасном диапазоне спектра // Патент РФ на изобр. №2263923. - Бюл. №31 от 10.XI.2005 г.

4. Богомолов Г.Д., Жижин Г.Н., Кирьянов А.П., Никитин А.К., Хитров О.В. Определение показателя преломления поверхностных плазмонов ИК-диапазона методом статической ассиметричной интерферометрии // Известия РАН. Серия физическая. - 2009, т.73, №4, с.562-565 (прототип).

5. Bogomolov G.D., Zhizhin G.N., Nikitin А.К., Knyazev B.A. Geodesic elements to control terahertz surface plasmons // Nuclear Instruments and Methods in Physics Research (A), 2009, V.603, No.1/2, p.52-55.

Способ определения показателя преломления поверхностной электромагнитной волны (ПЭВ) инфракрасного диапазона, включающий измерение интенсивности ПЭВ после пробега волной двух различных расстояний по плоской поверхности образца и расчет значения комплексного показателя преломления по результатам измерений, отличающийся тем, что дополнительно измеряют глубину проникновения поля ПЭВ в окружающую образец среду, а расчет действительной и мнимой частей показателя преломления производят по формулам


где к1 - действительная часть показателя преломления ПЭВ; к2 - мнимая часть показателя преломления ПЭВ;
k0=2π/λ, λ - длина объемной волны, генерирующей ПЭВ, в вакууме;
δ - глубина проникновения поля ПЭВ в окружающую образец среду с диэлектрической проницаемостью ε;
I1 и I2 - интенсивность поля ПЭВ после пробега волной расстояний l1 и l2 (причем l2>l1).



 

Похожие патенты:

Изобретение относится к аналитическому приборостроению и может быть использовано в жидкостной хроматографии. .

Изобретение относится к области детектирования аналитов в среде. .

Изобретение относится к измерительной технике, а именно к измерению показателя преломления жидкостей, газов, стекол и других прозрачных сред. .

Изобретение относится к системам анализа цифровых изображений, в частности к системам представления в цифровых изображениях заслоняемых объектов. .

Изобретение относится к оптико-электронному приборостроению, а именно к способам и средствам измерения показателя преломления жидких и пастообразных веществ, использующим метод предельного угла, и может быть применено при создании средств измерения как оптически прозрачных, так и оптически непрозрачных жидкостей, паст, гелей, мелкодисперсных порошков и т.п.

Изобретение относится к измерительной технике и может быть использовано при точных измерениях углов в атмосфере. .

Изобретение относится к оптической диагностике пространственных динамических процессов, протекающих в прозрачных многофазных пористых и зернистых средах, и может быть использовано в химической и нефтяной промышленности, инженерной экологии.

Изобретение относится к области оптики, а именно к определению коэффициента нелинейности показателя преломления оптических сред. .

Изобретение относится к области аналитической техники, а именно к способам и средствам оценки детонационной стойкости автомобильных бензинов. .

Изобретение относится к измерительной технике и предназначено для бесконтактного определения времени жизни неравновесных носителей заряда в тонких полупроводниковых пластинках

Изобретение относится к физике атмосферы и может быть использовано при определении структурной характеристики показателя преломления, параметра Штреля и радиуса Фрида

Изобретение относится к оптике и может быть использовано для измерения показателя преломления твердых веществ

Предлагаемое изобретение относится к оптическим измерениям. Способ измерения показателя преломления газовых сред основан на измерении частоты одночастотного перестраиваемого лазера, настроенного на максимум выбранной моды высокостабильного интерферометра Фабри-Перо, когда межзеркальное пространство заполнено газовой средой и когда оно вакуумировано. Значение показателя преломления газовой среды определяют отношением измеренных частот в вакууме и в присутствии газовой среды. Технический результат заключается в повышении точности определения показателя преломления газовых сред. 1 ил.

Изобретение относится к носителю (11) и устройству (100) для оптического детектирования в образце (1) в камере (2) для образца. Носитель (11) содержит оптическую структуру (50) для преломления входного светового пучка (L1) в прилегающую камеру (2) для образца, а также для сбора выходного светового пучка (L2) из светового излучения, порожденного в камере (2) для образца входным световым пучком. Оптическая структура 50 предпочтительно содержит канавки в поверхности (12) носителя (11), в которых входной световой пучок проходит небольшое расстояние через образец. Оптическая структура 50 может быть также использована для обнаружения увлажнения. Изобретение позволяет уменьшить объем детектирования. 2 н. и 18 з.п. ф-лы, 16 ил.

Изобретение относится к оптико-электронному приборостроению, а именно к рефрактометрическим средствам измерения показателя преломления жидких и пастообразных веществ, порошков и т.п. веществ. Устройство измерения показателя преломления содержит по меньшей мере один щуп-зонд, соединенный с регистрирующим модулем посредством световода, при этом щуп-зонд может быть выполнен, например, с использованием керамической ферулы, выполняющей роль оправы световода и плосковыпуклой линзы, или другими способами. Изобретение позволяет создать простое в исполнении устройство для реализации многоточечного непрерывного измерения показателя преломления. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области исследования или анализа веществ и материалов путем определения их химических или физических свойств, в частности к рефрактометрическим датчикам оценки качества топлива. Устройство содержит источник оптического излучения, первый отрезок оптического волокна, помещаемый в канал подачи топлива, и первый фотоприемник, соединенный с блоком обработки сигналов. Первый отрезок оптического волокна состоит из сердцевины, внутри которой сформирована внутриволоконная решетка, оболочки и защитного покрытия, отсутствующего в зоне внутриволоконной решетки. В устройство дополнительно введены разветвитель, второй отрезок оптического волокна, аналогичный первому, с частично вытравленной оболочкой в зоне внутриволоконной решетки, и помещаемый в канал подачи топлива параллельно первому отрезку оптического волокна, и второй фотоприемник. Выход источника оптического излучения соединен со входом разветвителя, выходы которого через первый и второй отрезки оптических волокон соединены соответственно с входами первого и второго фотоприемников, а выход второго фотоприемника соединен со вторым входом блока обработки сигналов. Технический результат - повышение точности оценки качества топлива. 3 ил.

Изобретение может быть использовано для определения показателя преломления вещества частиц, образующих упорядоченные многослойные дисперсные структуры, такие как фотонные кристаллы и коллоидные кристаллы. Способ заключается в помещении структуры в среду с известным спектром показателя преломления, нахождение длины волны λPBG, на которой имеет место минимум коэффициента когерентного пропускания минимума фотонной запрещенной зоны (ФЗЗ) и его значения TPBG. Определенными значениями показателя преломления частиц считаются такие значения показателя преломления частиц, при которых совпали 1) спектральные положения, 2) спектральные положения и значения экспериментальных и рассчитанных минимумов коэффициента когерентного пропускания фотонной запрещенной зоны. Изобретение обеспечивает определение показателя преломления частиц, образующих упорядоченные трехмерные дисперсные структуры. 2 н.и 1 з.п. ф-лы, 2 ил.

Изобретение относится к получению и исследованию метаматериалов, в частности к оптической диагностике материалов с отрицательным показателем преломления. В способе определения оптического метаматериала, включающем падение коллимированного светового пучка под углом на пластинку исследуемого материала, на обе ее поверхности наносят диэлектрические и непрозрачные для светового пучка покрытия, при этом световой пучок проходит внутрь пластинки через входное окно, соизмеримое с толщиной пластинки и выполненное по центру в одном из покрытий. По положению выходного светового пучка относительно нормали к границе раздела сред в точке падения определяют принадлежность пластинки к метаматериалу. Способ прост в экспериментальной реализации, технологичен и надежно идентифицирует метаматериал с отрицательным показателем преломления. 3 н.п. ф-лы, 3 ил.
Наверх