Способ получения мезопористых элементосиликатов

Изобретение относится к области синтеза мезопористых материалов, а именно к способу получения мезопористых элементосиликатов. Способ получения мезопористых элементосиликатов осуществляют путем приготовления раствора соли или солей металлов с этилсиликатом-40, упаривания раствора с образованием суспензии или твердого материала, обработки продукта после упаривания водным раствором аммиака, сушки полученной пасты при 100-150°С на воздухе с последующим прокаливанием при 500-650°С в течение 4-6 часов и измельчением. Изобретение позволяет значительно ускорить процесс образования мезопористых элементосиликатов, снизить затраты на их приготовление по сравнению с известными методами, получить активные силикатные катализаторы с одним или несколькими равномерно распределенными в силикатной матрице металлами из широкого круга элементов. 5 з.п. ф-лы, 2 ил., 2 табл.

 

Изобретение относится к области синтеза мезопористых материалов, а именно к способу получения мезопористых элементосиликатов.

Эпементосиликаты, в частности титаносиликаты, известны как активные катализаторы большого числа реакций: алкилирования бензола этиленом, гидрокрекинга, изомеризации парафинов и нафтенов, полимеризации олефинов, окисления углеводородов (например, бензола и фенола) и др. [Пат. РФ 2076775, 1997; Пат. США 5935895, 1999].

Ускоренное развитие исследований по синтезу и применению каталитически активных элементосиликатов произошло после реализации в 1986 г. компанией Enichem в Италии промышленного процесса окисления фенола пероксидом водорода в присутствии микропористого титаносиликатного катализатора TS-1 [Pat. US 4410501, С 01 В 33/20,1983; RU 2076775].

Согласно патенту катализатор состава xTi·(1-x)SiO2, где х=0,0005-0,04, получают путем гидротермальной обработки в автоклаве шихты, содержащей источник оксида кремния, оксиды титана, азотированное органическое основание и воду, отделения кристаллов от маточного раствора, их промывки, сушки и прокалки.

В качестве темплата R4NOH (азотированное органическое основание) при соотношении R4N+/SiO2 0.1:2.0 обычно используют тетраэтиламмония гидроксид. В качестве источника оксида кремния используют тетраэтилортосиликат, а в качестве источника оксида титана используют тетраэтилортотитанат, Ti(ОС2Н5)4. Согласно патенту гидротермальную обработку проводят при 130-200°С в автоклаве под давлением в течение 6-30 дней, а прокалку в течение 1-72 часов при 550°С.

Несмотря на расход дорогостоящих реагентов, особенно темплата, и необходимость многодневной гидротермальной обработки шихты в автоклаве, катализатор TS-1 остается лучшим катализатором окисления органических соединений пероксидом водорода.

Главным недостатком микропористых катализаторов типа TS-1 является малый размер пор, что делает невозможным их использование в реакциях, включающих превращение крупных молекул.

В последнее десятилетие в мире стремительно выросло число работ по синтезу, исследованию и применению новых материалов - мезопористых силикатов, содержащих ионы различных переходных металлов.

Существуют два принципиально различных типа мезопористых металлосиликатных материалов: неупорядоченные и упорядоченные. К первому типу относятся аморфные смешанные оксиды, ко второму - различные мезоструктурированные материалы (МММ, МСМ-41, МСМ-48 и др.), которые часто называют мезопористыми молекулярными ситами.

Мезопористые мезофазные молекулярные сита получают посредством синтеза, в котором происходит кристаллизация геля, содержащего источник кремния, структуроопределяющий агент (темплат) и соединение переходного металла. Затем проводят кристаллизацию (часто при повышенных давлениях и температурах), фильтрацию, промывку, сушку и прокалку элементосиликата.

По данной схеме осуществлен синтез элементосиликатов, описанный в патенте US 5958368 (пункт притязаний 6). Метод получения молекулярных сит, имеющих трехмерную решетку и узкое распределение пор по размеру от 0,5 нм до среднего размера каналов, определенных по изотерме адсорбции азота, включает следующие ступени:

a) получение водного раствора силиката натрия с одной или несколькими солями из группы, включающей алюминаты, бораты и кислые соли 3d переходных металлов Периодической системы, и галогенида алкилтриметиламмония в качестве темплата, соответствующего формуле CnH2n+1(СН3)3NX, где n от 12 до 18 и Х=Cl или Br;

b) добавление в полученный водный раствор одной или нескольких водорастворимых органических солей, выбранных из группы, включающей натриевые соли этилендиаминтетраацетата, адипиновой, уксусной, 1,3-бензолдисульфоновой кислот;

c) гидротермальная обработка полученного раствора при подходящих значениях рН и температуры в течение времени, достаточного для образования молекулярного сита;

d) фильтрация, промывка и сушка осадка молекулярного сита;

e) прокалка отфильтрованного и высушенного осадка. Способ получения мезопористых металлосиликатных молекулярных сит описан в патентах US 5712402, 5855864 и 6391278 В1. Раствор тетраизопропилортотитаната (TIPOT) в изопропиловом спирте смешивают с раствором тетраэтилортосиликата (TEOS) в этиловом спирте. Образовавшуюся прозрачную смесь нагревают и перемешивают при 65-80°С в течение 3 часов для создания -Ti-О-Si- связей. Затем нагретую смесь приливают в водный раствор темплата - додециламина и при перемешивании подвергают старению при комнатной температуре в течение 18 часов. Образовавшийся продукт после экстрагирования темплата сушат и прокаливают при 650°С в течение 4 часов. При этом выгорают остатки темплата и образуется мезопористый титаносиликат. Кроме TIPOT в патентах приведены примеры использования Na3VO4 и CrO3.

Недостатками данных способов приготовления мезопористых металлосиликатов является сложность технологии, использование дорогих и токсичных реагентов, возможность использования только ограниченного круга металлов.

Задачами настоящего изобретения являются:

1) разработка способа получения мезопористых элементосиликатов с возможностью вовлечения в состав практически любого металла Периодической системы элементов, либо одновременно нескольких металлов;

2) существенное упрощение способа и снижение затрат на приготовление катализаторов.

Решение поставленных задач достигается тем, что способ получения мезопористых элементосиликатов осуществляют путем приготовления раствора соли или солей металлов с этилсиликатом-40, упаривания раствора с образованием суспензии или твердого материала, обработки продукта после упаривания водным раствором аммиака, сушки полученной пасты при 100-150°С на воздухе с последующим прокаливанием при 500-650°С в течение 4-5 часов.

В качестве солей металлов используются растворимые в этаноле или других органических растворителях хлориды, нитраты, ацетаты Al, Ti, Fe, Zr, Sn, Ca, Cu, Mn, Cr и других металлов. Атомное соотношение кремний: металл в исходной смеси составляет от 100:1 до 2:1.

Упаривание смеси реагентов проводят при атмосферном или пониженном (0,08 МПа) давлении, 100-150°С в течение 4-5 часов до получения продукта (суспензии или твердого остатка), масса которого составляет ≤70% от массы исходного этилсиликата-40. Содержание аммиака в водном растворе, которым обрабатывают упаренный продукт, составляет 1,0±0,1 эквивалента аммиака на эквивалент соли и 30 ммоль аммиака на 100 г этилсиликата-40.

Прокалку высушенного продукта проводят при постепенном подъеме температуры до 500-650°С со скоростью 2-5°С в минуту.

Использование предлагаемого способа позволяет:

1) значительно ускорить получение мезопористых элементосиликатов за счет более быстрого протекания процессов гидролиза, поликонденсации, золегелеобразования и образования ксерогеля при упаривании исходной смеси и последующей обработки аммиачной водой;

2) снизить затраты на приготовление катализаторов за счет использования более дешевого, чем тетраэтилортосиликат, этилсиликата-40 и за счет отказа от использования дорогостоящих темплатов и их утилизации;

3) использовать относительно дешевые соли большинства металлов Периодической системы элементов вместо ограниченного круга дорогих, малодоступных, часто нестабильных алкосидов (алкоголятов) металлов;

4) получить активные силикатные катализаторы с одним или несколькими равномерно распределенными в силикатной матрице металлами из широкого круга элементов.

Изобретение иллюстрируется следующими примерами.

ПРИМЕР 1. В 30 мл этилового спирта при перемешивании постепенно загружают 2,67 г (0,02 М) хлористого алюминия, AlCl3 и после растворения приливают 60 г этилсиликата-40 (0,40 М SiO2). Полученную смесь перемешивают при 35-50°С в течение 10-15 минут до образования прозрачного раствора, помещают в сушильный шкаф и упаривают при 150°С в течение 5 часов. Получают 39 г суспензии (65% от массы этилсиликата-40), которую смешивают с 20 мл аммиачной воды, содержащей 80 ммоль аммиака, и образовавшуюся массу сушат при 150°С. Высушенный продукт нагревают со скоростью 2° в минуту до 550°С и прокаливают в течение 4 часов. При этом вода, хлористый аммоний и остатки спирта улетучиваются. Получают 25 г алюмосиликатного катализатора с атомным соотношением 100 Si:5 Al, свойства которого представлены в таблице 1.

Фазовый состав образца определяли рентгенографическим методом на автоматическом дифрактометре PHILIPS-PW-1800. Образец представляет собой мезопористый материал (фиг.1).

Пористую структуру катализатора исследовали при измерении изотерм адсорбции-десорбции азота при 77,4К на объемной вакуумной статической установке ASAP-2020 «Micromeritics». Диапазон равновесных относительных давлений составлял от 10-6 до 0,996 Р/Р0. Анализ кривой распределения пор по размерам показал узкое распределение мезопор в образце примера 1 с максимумом около 4 нм (фиг.2).

ПРИМЕР 2. В 20 мл этилового спирта растворяют 1,5 г (0,004 М) азотнокислого алюминия, Al(NO3)3×9 H2O и приливают 60 г этилсиликата-40 (0,40 М SiO2). Полученный раствор перемешивают, помещают в сушильный шкаф и упаривают при 150°С в течение 5 часов. Получают 31 г сухого материала (51,7% от исходного этилсиликата-40), который измельчают в ступке, смешивают с 20 мл аммиачной воды, содержащей 30 ммоль аммиака, и снова сушат при 150°С. Высушенный продукт нагревают со скоростью 2° в минуту до 500°С и прокаливают в течение 4 часов. При этом вода, хлористый аммоний, остатки спирта и продукты разложения азотнокислого аммония улетучиваются. Получают 22 г алюмосиликатного катализатора с атомным соотношением 100 Si:Al, свойства которого представлены в таблице 1.

ПРИМЕР 3. В 100 мл этилового спирта при перемешивании постепенно загружают 26,7 г (0,20 М) хлористого алюминия AlCl3, после растворения приливают 60 г этилсиликата-40 (0,4 М SiO2) и перемешивают. Полученный прозрачный раствор помещают в сушильный шкаф и сушат при 140°С в течение 5 часов. Образовавшийся жесткий осадок (39 г, 65,0% от массы исходного этилсиликата-40) растирают, заливают 60 мл аммиачной воды, содержащей 620 ммоль аммиака, перемешивают и сушат при 140°С. Высушенный продукт нагревают до 550°С по 3°С в минуту и прокаливают в течение 6 часов. Получают 34,0 г алюмосиликатного катализатора с атомным соотношением 100Si:50Al, свойства которого представлены в таблице 1.

ПРИМЕР 4. В 25 мл этилового спирта растворяют 2,15 г (0,0067 М) хлористого цирконила, ZrOCl2×8 H2O, приливают 30 г (0,2 М SiO2) этилсиликата-40 и перемешивают. Полученный раствор помещают в вакуумный сушильный шкаф, понижают давление до 0,8 бар, постепенно поднимают температуру до 100°С и сушат в течение 4 часов при 100°С и давлении 0,08 МПа. Высушенную массу растирают, заливают 30 мл аммиачной воды, содержащей 24 ммоль аммиака, перемешивают и сушат при 140°С. Высушенный продукт нагревают до 550°С по 5°С в минуту и прокаливают в течение 5 часов. Получают 12,2 г цирконийсиликатного катализатора с атомным соотношением 100 Si:3,3 Zr, свойства которого представлены в таблице 1.

ПРИМЕР 5. В 40 мл этилового спирта при 40-50°С растворяют 4,3 г (0,013 М) хлористого цирконила, ZrOCl2×8 H2O, загружают 60 г (0,40 М SiO2) этилсиликата-40 и затем при перемешивании 0,82 г (0,006 М) хлористого алюминия, AlCl3, Раствор упаривают досуха в сушильном шкафу при 150°С в течение 5 часов. Высушенный материал (38,0 г, 63,3% от массы исходного этилсиликата-40) измельчают, заливают 30 мл аммиачной воды, содержащей 60 ммоль аммиака, и снова сушат при 150°С. Высушенный продукт нагревают со скоростью 3° в минуту до 650°С и прокаливают в течение 4 часов. Получают 25,7 г алюмоцирконийсиликатного катализатора с атомным соотношением 100 Si:3,3 Zr:1,5 Al, свойства которого представлены в таблице 1.

ПРИМЕР 6. В 30 мл этилового спирта растворяют 2,45 г (0,01 М) ацетата марганца, (СН3СОО)2Mn×4 H2O, приливают 45 г (0,3 М SiO2) этилсиликата-40 перемешивают прозрачный раствор и упаривают в течение 5 часов в сушильном шкафу при температуре 150°С. В упаренную, охлажденную до комнатной температуры массу (29,0 г, 70,0% от массы исходного этилсиликата-40), приливают 10 мл аммиачной воды, содержащей 35 ммоль аммиака, перемешивают и высушивают при 140-150°С. Затем, поднимая температуру по 3°С в минуту, нагревают до 550°С и выдерживают при этой температуре в течение 4 часов. Прокаленный продукт измельчают и получают 17,2 г марганецсиликатного катализатора, характеристики которого представлены в таблице 1.

ПРИМЕР 7. В 30 мл этилового спирта при перемешивании постепенно загружают 2,67 г (0,02 М) хлористого алюминия AlCl3 и затем 60 г (0,40 М) этилсиликата-40. В образовавшийся спиртовый раствор хлористого алюминия и этилсиликата-40 заливают 2,2 мл (3,8 г, 0,02 М) четыреххлористого титана TiCl4 и перемешивают в течение нескольких минут. Полученный раствор упаривают в сушильном шкафу в течение 5 часов при температуре 150°С до образования суспензии титаналюминийсиликата в этилсиликате. В упаренную охлажденную до комнатной температуры суспензию (38,5 г, 64,2% от массы исходного этилсиликата-40) при перемешивании приливают 30 мл аммиачной воды, содержащей 160 ммоль аммиака. Образовавшуюся массу сушат при 100°С в течение 6 часов, затем нагревают по 3°С в минуту до 550°С и прокаливают в течение 4 часов. Прокаленный продукт измельчают и получают 24,7 г титаналюминийсиликатного катализатора, характеристики которого представлены в таблице 1.

Каталитическую активность синтезированных элементосиликатов исследовали в реакции димеризации α-метилстирола:

В стеклянный обогреваемый реактор с мешалкой, обратным холодильником и термометром загружали 3 мл (2,65 г) α-метилстирола, 0,13 г (5% мас. от α-метилстирола) катализатора и перемешивали на водяной бане в течение 1 часа при температуре 96°С. После охлаждения и отфильтровывания катализатора определяли состав реакционной массы с помощью газожидкостной хроматографии. Данные по каталитической активности полученных образцов представлены в таблице 2.

Таблица 1
Физические характеристики мезопористых элементосиликатов.
Элементосиликат Атомное соотношение элементов Насыпная плотность, г/см3 Удельная поверхность, м2 Объем пор по парам бензола, см3 Объем пор по парам воды, см3
по примеру 1 100 Si:5 Al 0,54 340 0,69 0,07
по примеру 2 100 Si:Al 0,64 450 0,58 0,03
по примеру 3 100 Si:50 Al 0,68 288 0,39 0,08
по примеру 4 100 Si:3,3 Zr 0,88 582 0,25 0,17
по примеру 5 100 Si:3,3 Zr:1,5 Al 0,80 410 0,34 0,05
по примеру 6 100 Si:3,3 Mn 0,65 487 0,46 0,13
по примеру 7 100 Si:5 Ti:5 Al 0,42 324 0,65 0,06
Таблица 2
Димеризация α-метилстирола в присутствии мезопористых элементосиликатов.
Элементосиликат Конверсия α-метилстирола, % Состав продуктов димеризации α-метилстирола, %
α-метилстирол циклический димер (1) линейные димеры (2a, б) тримеры
по примеру 1 96,9 3,1 17,6 71,2 8,1
по примеру 2 94,0 5,1 4,5 80,9 9,5
по примеру 3 96,7 3,3 21,9 67,2 7,6
по примеру 4 87,9 12,1 6,6 73,0 8,3
по примеру 5 99,0 1,0 35,3 46,6 17,1
по примеру 6 96,3 3,7 28,0 52,9 15,4
по примеру 7 95,2 4,8 12,5 73,8 8,9

1. Способ получения мезопористых элементосиликатов, характеризующийся тем, что в начале готовят раствор солей одного или нескольких металлов (Me) с этилсиликатом -40, затем полученный раствор выпаривают с образованием суспензии или твердого материала, которые подвергают обработке водным раствором аммиака, полученную при этом пасту сушат на воздухе при 100-150°С с последующим прокаливанием при 500-650°С в течение 4-6 ч и измельчением.

2. Способ по п.1, отличающийся тем, что в качестве солей металлов используют растворимые в этаноле или других органических растворителях хлориды, нитраты, ацетаты Al, Ti, Fe, Zr, Sn, Са, Cu, Mn, Cr и других металлов.

3. Способ по п.1, отличающийся тем, что атомное соотношение Si:Me в исходной смеси составляет 100:1-2:1.

4. Способ по п.1, отличающийся тем, что упаривание смеси реагентов проводят при атмосферном давлении, 100-150°С в течение 4-6 ч или при пониженном давлении (0,08 МПа) до получения продукта, масса которого составляет <70% от массы исходного этилсиликата - 40.

5. Способ по п.1, отличающийся тем, что водный раствор аммиака содержит 1±0,1 эквивалент аммиака на эквивалент соли и 30 ммоль аммиака на 100 г этилсиликата -40.

6. Способ по п.1, отличающийся тем, что при прокалке температуру поднимают до 500-650°С со скоростью 2-5°С/мин.



 

Похожие патенты:

Изобретение относится к области синтеза мезопористых материалов, а именно к способу получения мезопористых аморфных смешанных элементосиликатов. .

Изобретение относится к способу получения и активации полиметаллических катализаторов и их применения для уменьшения содержания N 2O. .

Изобретение относится к новому семейству кристаллических алюмосиликатных цеолитов. .

Изобретение относится к модифицированному цеолиту NU-86, содержащему кремний и по меньшей мере один элемент Т, выбранный из группы, состоящей из алюминия, железа, галлия и бора.

Изобретение относится к области синтеза мезопористых материалов, а именно к способу получения мезопористых аморфных смешанных элементосиликатов. .

Изобретение относится к химии. .

Изобретение относится к области синтеза нецеолитовых молекулярных сит, которые имеют трехмерную микропористую каркасную структуру, содержащую блоки [AlO2] и [PO2]. .

Изобретение относится к способу окислительно-восстановительного аммоксимирования, в котором кетон или альдегид реагирует с аммиаком и кислородом в присутствии катализатора, где катализатором является окислительно-восстановительный катализатор на основе алюмофосфата, имеющий качественную общую формулу (I): где М1 означает, по меньшей мере, один переходный металл, выбранный из Co(III), Mn(III), Fe(III), Cr(VI), Cu(III), V(V) и Ru(III); М2 означает металл, выбранный из Ge(IV), Sn(IV), Re(IV), V(IV) и их смесей; М1 и М2 отличаются друг от друга; и некоторая часть атомов фосфора в структуре типа M1M2AlPO-5 замещена атомами М2. Заявлен также катализатор окислительно-восстановительного аммоксимирования. Технический результат - обеспечивается селективный способ аммоксимирования. 2 н. и 9 з.п. ф-лы, 5 табл., 6 ил., 16 пр.
Изобретение относится к получению неорганических сорбентов. Предложен способ получения алюмосиликатного сорбента, включающий приготовление гетерогенной композиции, содержащей порошок алюминия, кристаллогидрат метасиликата натрия Na2SiO3·9H2O и водный раствор соли металла, выбранного из меди, кальция, никеля, кобальта или серебра. Массовое соотношение упомянутых компонентов составляет 1:3:10. Перемешивание полученной смеси осуществляют в течение 10 мин при комнатной температуре. Затем производят сушку на воздухе при комнатной температуре в течение 7 суток. Изобретение обеспечивает получение сорбента с высокой ёмкостью по отношению к тяжёлым металлам и радионуклидам. 6 пр.

Изобретение относится к производству цеолитов. Способ получения цеолитного материала, имеющего каркасную структуру, содержащую YO2, включает следующие стадии. 1 - приготовление смеси, содержащей четырехвалентные элементы Y в элементарной форме, гидроксосоль четвертичного аммония, и воду. Четырехвалентные элементы Y представляют собой смесь Si и Ti. 2 - реагирование смеси, полученной на стадии (1) для преобразования, по меньшей мере, части четырехвалентных элементов Y в оксидную форму, содержащую Y-O одинарные связи и/или Y=O двойные связи, при этом реагирование смеси на стадии (2) включает нагревание смеси, полученной на стадии (1), при температуре от 30°С до температуры кипения смеси. 3 - кристаллизация цеолитного материала из смеси, полученной на стадии (2). Кристаллизацию проводят при температуре от 100 до 250°С при аутогенном давлении. Согласно способу после стадии (2) и перед стадией (3) смесь освобождают от твердых веществ. Изобретение обеспечивает экономически эффективный и экологически безопасный способ получения цеолитного материала 7 з.п. ф-лы, 10 ил., 8 пр.
Наверх