Способ управления установкой для сжатого воздуха, установка для сжатого воздуха и контроллер для осуществления такого способа

Способ управления модулем (1) для сжатого воздуха, содержащим одну или несколько сетей сжатого воздуха, а также множество сообщающихся контроллеров (6, 9, 13, 23, 24, 25 или 26) для управления компонентами, которые представляют собой часть упомянутых сетей сжатого воздуха. Управление упомянутыми компонентами выполняют так, что ни один из сообщающихся контроллеров (6, 9, 13, 23, 24, 25 или 26) не определяет рабочие условия всех компонентов, управляемых другими контроллерами. Позволяет управлять только простыми сетями сжатого воздуха с довольно малым количеством компонентов. Упрощается конструкция. 3 н. и 10 з.п.ф-лы, 2 ил.

 

Настоящее изобретение относится к способу управления модулем для сжатого воздуха.

В частности, настоящее изобретение относится к способу управления модулем для сжатого воздуха, содержащим одну или несколько сетей сжатого воздуха, а также множество сообщающихся контроллеров для управления компонентами, которые составляют часть упомянутой сети сжатого воздуха.

Под модулем для сжатого воздуха понимают любую установку, в которой используется сжатый газ, который необязательно ограничивается сжатым воздухом.

Известно раздельное управление множеством компрессоров, которые составляют часть модуля для сжатого воздуха, с помощью отдельного контроллера, в результате чего разные контроллеры не соединены друг с другом, и, таким образом, каждый из этих контроллеров установлен на разное значение давления, в результате чего компрессоры последовательно включаются или выключаются, в зависимости от потребления сжатого воздуха.

Также известно применение того, что называется централизованным управлением, в результате чего осуществляют управление несколькими компрессорами с помощью одного контроллера, и с этой целью упомянутый контроллер определяет рабочие условия всех этих компрессоров в любой момент времени.

Наконец, также известен другой способ централизованного управления модулем для сжатого воздуха, при использовании которого несколько взаимно соединенных контроллеров используют для управления множеством компрессоров, которые соединены с этими соответствующими контроллерами, в результате чего, по меньшей мере, один из этих контроллеров определяет рабочие условия каждого из упомянутых компрессоров в любой момент времени.

В результате, один из контроллеров может функционировать как "главный" в любой момент времени, передавая команды в другие "подчиненные" контроллеры, для управления соответствующими компрессорами, соединенными с последним.

Другой возможный вариант применения такой конфигурации состоит в том, что каждый из контроллеров определяет рабочие условия всех компрессоров и управляет только компрессорами, которые подключены к нему, учитывая состояние других компрессоров.

Недостаток известных способов состоит в том, что они позволяют управлять только простыми сетями сжатого воздуха с довольно малым количеством компонентов.

Другой недостаток состоит в том, что такой способ приводит к использованию сложных контроллеров, которые являются дорогостоящими и, которые делают компоновку и логическую схему управления таким модулем для сжатого воздуха довольно громоздкой и сложной, в частности когда необходимо учитывать много параметров.

Настоящее изобретение направлено на устранение одного или нескольких из упомянутых выше и других недостатков.

С этой целью настоящее изобретение относится к способу управления модулем для сжатого воздуха, содержащим одну или несколько сетей сжатого воздуха, а также множество сообщающихся контроллеров для управления компонентами, которые составляют часть упомянутой сети сжатого воздуха, в результате чего управление упомянутыми компонентами осуществляют так, чтобы ни один из контроллеров не определял рабочие условия компонентов, управляемых другими контроллерами.

Основное преимущество такого способа в соответствии с изобретением состоит в том, что его можно применять в сложных и крупных модулях для сжатого воздуха, и при этом необходимо использовать только ряд простых, взаимно соединенных контроллеров, в результате чего ограничиваются логика управления и сложность такого модуля для сжатого воздуха.

Настоящее изобретение также относится к контроллеру для осуществления способа в соответствии с изобретением, причем этот контроллер представляет собой часть группы контроллеров в модуле для сжатого воздуха, содержащем одну или несколько сетей сжатого воздуха, в результате чего указанная группа сообщающихся контроллеров обеспечивает управление компонентами, которые составляют часть упомянутой сети сжатого воздуха, при этом упомянутый контроллер выполнен так, чтобы он не определял рабочие условия компонентов, управляемых другими контроллерами в модуле для сжатого воздуха.

Настоящее изобретение также относится к модулю для сжатого воздуха для осуществления способа в соответствии с изобретением, причем этот модуль для сжатого воздуха содержит одну или несколько сетей сжатого воздуха, а также множество сообщающихся контроллеров для управления компонентами, которые составляют часть упомянутой сети сжатого воздуха, при этом упомянутые контроллеры выполнены так, чтобы ни один из них не определял рабочие условия компонентов, управляемых другими контроллерами.

Для лучшего пояснения признаков настоящего изобретения описан предпочтительный способ в соответствии с изобретением, а также контроллер и модуль для сжатого воздуха, для осуществления такого способа, со ссылкой на приложенные чертежи, на которых:

на фиг.1 представлен модуль для сжатого воздуха, управляемый с помощью способа в соответствии с изобретением;

на фиг.2 представлен вариант, соответствующий фиг.1.

На фиг.1 представлен модуль 1 для сжатого воздуха, которым можно управлять с помощью способа согласно изобретению, с этой целью, в данном случае, модуль 1 для сжатого воздуха содержит сеть 2 передачи данных, с которой соединены три ответвления 3, 4 и 5.

Первое ответвление 3 в данном случае содержит первый контроллер 6 из группы контроллеров, при этом датчик 7 температуры и охлаждающая башня 8 соединены с этим контроллером 6.

Во втором ответвлении 4 предусмотрен второй контроллер 9 из группы контроллеров, причем этот контроллер 9 непосредственно управляет двумя компрессорами 10 и 11 и опосредованно управляет сушильным устройством 12, которое соединено с описанным выше компрессором 10.

Третье ответвление 5 содержит третий контроллер 13, который составляет часть вышеуказанной группы контроллеров, причем третий контроллер 13 управляет компрессором 14, сушильным устройством 15 и управляемым клапаном 16, с которым также в данном случае соединен датчик 17 давления.

Наконец, датчик 18 расхода также соединен с вышеупомянутой сетью 2.

В представленном примере разные компоненты модуля 1 для сжатого воздуха показаны как свободные компоненты, которые не соединены взаимно, но очевидно, что эти компоненты могут быть выполнены с любыми взаимными соединениями, и, таким образом, они могут быть взаимно соединены любым образом, и, таким образом, они могут составлять часть одной сети сжатого воздуха.

Однако в соответствии с изобретением для этих компонентов не исключается возможность принадлежности к различным сетям сжатого воздуха, по отдельности, или в группах.

В этом случае каждый из упомянутых компрессоров 10, 11 и 14 выполнены управляемыми, например с известным приводом, с помощью двигателя с регулируемой скоростью, который не показан на чертеже, но который соединен с соответствующим контроллером 9 или 13.

Упомянутый выше клапан 16 в этом случае также выполнен управляемым, например управляемым с помощью серводвигателя, который не представлен на чертежах, но который также соединен с упомянутым выше контроллером 13,

Сушильными устройствами 12 и 15 можно управлять, в неограничительном примере - с помощью двигателя, управляемого частотой (не представлен на чертежах), который выполняет привод барабана адсорбционного сушильного устройства, или путем управления с помощью двигателя, управляемого частотой, который осуществляет привод компрессора охлаждающего сушильного устройства.

Охлаждающей башней 8 можно управлять, например, путем регулировки скорости вращения двигателя привода вентилятора (не показан), или тому подобного, который всасывает охлаждающий воздух через охлаждающую башню 8.

Способ управления модулем 1 для сжатого воздуха характеризуется тем, что упомянутые выше сообщающиеся контроллеры 6, 9 и 13 обеспечивают то, что называется распределенным управлением модулем 1 для сжатого воздуха, что означает, что ни один из сообщающихся контроллеров 6, 9 или 13 не определяет рабочие условия компонентов, которыми управляют с помощью других контроллеров.

В данном случае каждый контроллер 6, 9 и 13 определяет только рабочие условия компонентов, которые прямо и опосредованно соединены с ним. На практике это означает, что в данном примере, контроллер 6 определяет рабочие условия упомянутой охлаждающей башни 8, а контроллер 9 определяет рабочие условия компрессоров 10 и 11 и сушильного устройства 12, и, наконец, контроллер 13 определяет рабочие условия компрессора 14, сушильного устройства 15 и клапана 16.

Для того чтобы обеспечить стабильное и эффективное управление, различные контроллеры 6, 9 и 13 взаимно сообщаются через упомянутую сеть 2.

Следовательно, в соответствии с изобретением ни один из контроллеров 6, 9 или 13 не имеет информации о рабочих условиях всех компонентов модуля 1 для сжатого воздуха, упомянутое сообщение между контроллерами 6, 9 и 13 выполнено так, что эти контроллеры не передают все данные о компонентах, соединенных с ними, в другие контроллеры, но так, что, например, лишь ограниченную часть этих данных или выведенных из них характеристик, передают в упомянутые другие контроллеры, и значения этих характеристик формируют показатель "виртуального" компонента модуля 1 для сжатого воздуха.

Каждый из контроллеров 6, 9 и 13 впоследствии сравнивает данные, поступающие из других контроллеров, и, в конечном итоге, определяет рабочие точки компонентов модуля 1 для сжатого воздуха, соединенных с соответствующим контроллером, полностью или частично на основе данных измерения одного или нескольких датчиков 7, 17 и/или 18.

В практическом примере, таким образом, компрессоры 10, 11 и 14 составляют часть одной и той же сети сжатого воздуха, при этом контроллер 13 может, например, рассчитывать требуемый расход сжатого газа, который следует поставлять в сеть сжатого воздуха на основе измеренного давления с датчика 17 давления.

На основе такого расчета контроллер 13, который в данном случае представляет собой "главный" контроллер, может определять наиболее подходящую сегментацию вклада компрессора 14 и всех компрессоров 10 и 11, которые соединены с контроллером 9, а именно на основе виртуальных характеристик, которые сохранены в контроллере 9, причем этот контроллер 9 представляет собой "подчиненный" контроллер.

"Главный" контроллер 13, таким образом, управляет компрессором 14 соответствующим образом, с одной стороны, и передает рассчитанное требуемое значение в контроллер 9 через сеть 2, с другой стороны.

Контроллер 9, в свою очередь, управляет компрессорами 10 и 11, таким образом, что компрессоры 14, 10 и 11 вместе гарантируют то, что может быть достигнуто рассчитанное требуемое значение давления в модуле 1 для сжатого воздуха, а именно в соответствии с наиболее соответствующим кодом распределения, который определен, например, на основе минимального значения потребления, минимального технического обслуживания, самого длительного срока службы или тому подобного.

В соответствии с изобретением контроллер 9 никогда не «знает» информацию об условиях работы компрессора 14 и, наоборот, контроллер 13 никогда не «знает» информацию о рабочих условиях компрессоров 10 или 11, а лишь характеристическое значение для обоих компрессоров 10 и 11.

Хотя в предыдущем примере упомянуто управление только компрессорами, понятно, что аналогичные способы можно использовать для других управляемых компонентов модуля 1 для сжатого воздуха.

Кроме того, контроллер 13 не обязательно должен быть "главным", а контроллер 9 "подчиненным"; возможно также противоположное, или даже возможно, что оба контроллера 9 и 13 равны между собой, и при этом можно определять код распределения через взаимное соединение.

Способ в соответствии с изобретением можно применять последовательно, при этом несколько из управляемых компонентов модуля 1 для сжатого воздуха установлены в заданной последовательности.

При таком последовательном способе каждый раз, когда требования пользователя сжатого воздуха не могут быть удовлетворены с помощью уже активированных компонентов, или в случае, когда хороший рабочий порядок модуля 1 для сжатого воздуха больше нельзя гарантировать, будет активирован следующий компонент в последовательности.

И, наоборот, если работа всех компонентов больше не требуется для того, чтобы обеспечить возможность удовлетворить требованиям упомянутого выше пользователя сжатого воздуха, последний компонент упомянутой выше последовательности будет отключен.

Понятно, что вместо включения и выключения различными компонентами также можно управлять непрерывно на основе потребления сжатого воздуха модулем 1 для сжатого воздуха.

В соответствии с изобретением возможно, что компоненты разных типов, такие как источники сжатого воздуха, пользователи сжатого воздуха, устройства обработки для сжатого воздуха и клапаны сжатого воздуха выполнены в виде отдельной последовательности для типа компонента, но эти различные типы можно также менять друг с другом в последовательностях.

В соответствии с изобретением различные последовательности могут быть установлены оператором и/или они могут быть определены на основе идентифицируемых переменных, таких как, например, время, дата, давление, расход, точка росы, качество воздуха и/или температура.

В соответствии с особенностью изобретения разными управляемыми компонентами модуля 1 для сжатого воздуха можно управлять таким образом, что каждый из них является активным в течение некоторого периода времени, для того чтобы разнести износ упомянутых разных компонентов и, таким образом, продлить срок службы модуля 1 для сжатого воздуха.

Упомянутые установки времени могут быть введены оператором и/или они могут быть основаны на определенных переменных, таких как, например время, дата, давление, расход, точка росы, качество воздуха и/или температура.

В способе в соответствии с изобретением предпочтительно реализуется алгоритм, который обеспечивает возможность обслуживания разных компонентов модуля 1 для сжатого воздуха одновременно.

Управление различными компонентами модуля 1 для сжатого воздуха 1 может быть основано на разных параметрах, которые влияют на требования к обслуживанию, такие как, помимо прочих, количество рабочих часов и условия для работы.

В соответствии с предпочтительными характеристиками изобретения в способе управления модулем 1 для сжатого воздуха применяется алгоритм сбережения энергии, при этом обеспечивают оптимизированное потребление энергии, по меньшей мере, частью модуля 1 для сжатого воздуха, путем установки рабочей точки одного или нескольких из его компонентов таким образом, что потребление энергии становится, как можно более низким, хотя, тем не менее, гарантируется хорошая работа модуля 1 для сжатого воздуха.

В качестве варианта способ в соответствии с настоящим изобретением может быть реализован таким образом, что компонентами модуля 1 для сжатого воздуха управляют таким образом, что стоимость, помимо прочего, потребляемая энергия и техническое обслуживание, ремонт, замена и т.п. компонентов модуля 1 для сжатого воздуха 1 и/или модуля 1 для сжатого воздуха в целом всегда ограничены до минимума.

Наконец, для применения способа в соответствии с изобретением также можно использовать алгоритм управления таким образом, что модулем 1 для сжатого воздуха управляют так, что один или несколько параметров, которые, в качестве неограничительного примера, представляют собой температуру, давление, точку росы, объем, качество воздуха и расход, приводят в соответствие с определенным направленным значением, или таким образом, что один или несколько из этих параметров поддерживаются в пределах определенного диапазона путем управления подходящими компонентами с помощью одного или нескольких из упомянутых выше контроллеров 6, 9 и/или 13.

На фиг.2 представлен вариант модуля 1 для сжатого воздуха в соответствии с изобретением, который содержит сеть, в которой предусмотрены четыре ответвления 19-22, в каждом из которых в данном случае предусмотрены контроллеры 23-26 соответственно.

К контроллеру 23 присоединен датчик 27 расхода и датчик 28 давления.

Кроме того, этот контроллер 23 непосредственно соединен с контроллерами 24 и 25 и с охлаждающей башней 30 через сеть 29 передачи данных.

Контроллер 24, в свою очередь, соединен с датчиком 31 давления и с компрессором 32, в то время как контроллер 25 соединен с сушильным устройством 33 и с последним контроллером 26.

Наконец, с этим последним контроллером 26 соединены управляемый клапан 34 и два компрессора 35 и 36, в результате чего компрессор 36 соединен с сушильным устройством 37.

Очевидно, что также и в этом случае, управляемые компоненты модуля 1 для сжатого воздуха могут составлять часть одной сети сжатого воздуха, или они могут принадлежать разным сетям сжатого воздуха.

Способ, который применяют при управлении модулем 1 для сжатого воздуха в соответствии с фиг.2, аналогичен способу, описанному со ссылкой на модуль 1 для сжатого воздуха по фиг.1.

В этом случае также применяют распределенное управление модулем 1 для сжатого воздуха, при этом ни один из сообщающихся контроллеров 23-26 не определяет рабочие условия любого компонента, управляемого другими контроллерами.

В этом случае контроллер 26 прямо или косвенно определяет рабочие условия клапана 34, сушильного устройства 37 и компрессоров 35 и 36, и рассчитывает производную характеристическую величину на основе этих данных, которая представляет рабочие условия "виртуального" компонента модуля 1 для сжатого воздуха и которая детектируется с помощью контроллера 25, который также определяет рабочие условия сушильного устройства 33.

Таким образом, контроллер 25 никогда не имеет информации о точных рабочих условиях компрессоров 35, 36, сушильного устройства 37 или клапана 34, но получает только общее значение, которое представляет собой показатель их фактического состояния.

Впоследствии контроллеры 23 и/или 24 аналогичным образом могут определять рабочие условия компонентов, которые непосредственно соединены с ними.

На основе данных, полученных каждым контроллером 23-26, каждый из этих контроллеров 23-26 управляет соответствующими компонентами, которые соединены с ними.

Очевидно, что контроллеры 6, 9, 13 и 23-26 модуля 1 для сжатого воздуха в соответствии с изобретением могут быть соединены с любым из следующих компонентов, но, по меньшей мере, с одним из них или их комбинацией: пользователь сжатого воздуха, источник сжатого воздуха, устройство обработки для сжатого воздуха или клапан сжатого воздуха.

Под термином «пользователь сжатого воздуха» подразумевают любого возможного пользователя сжатого воздуха, такого как, например, пневматические инструменты.

Под термином «источник сжатого воздуха» понимают любой источник сжатого газа, такой как, например, винтовые компрессоры, поршневые компрессоры, вентиляторы и т.п., которые не ограничены подачей сжатого воздуха, но которые также можно применять для любого другого типа сжатого газа.

Под «устройством обработки сжатого воздуха» понимают любое устройство, которое разработано для изменения качества или физических параметров сжатого воздуха, такое как, например, сушильное устройство, теплообменники, фильтры, сепараторы влаги и масла и т.п.

Под «клапанами сжатого воздуха» понимают любые возможные воплощения управляемых клапанов, клапанов, отсечных клапанов, смесительных отводов, дроссельных клапанов и т.п.

В данных примерах, каждый из упомянутых выше компонентов модулей 1 для сжатого воздуха по фиг.1 и 2 соединены с соответствующими контроллерами 6, 9, 13, 23, 24, 25 или 26 с помощью физических каналов.

Очевидно, что такое соединение также может быть выполнено беспроводным, и оно не обязательно должно быть реализовано непосредственно, оно также может быть выполнено опосредованно, например, через отдельные модули передачи данных.

Очевидно, что упомянутые контроллеры 6, 9, 13 и 23-26 могут быть выполнены не только как отдельные модули, но так же и, как и встроенные элементы, которые могут содержать или не содержать один или несколько из следующих элементов: арифметический модуль, запоминающее устройство, экран, периферийные устройства и/или датчики для ввода данных и/или узел связи для передачи и приема сигналов.

Настоящее изобретение не ограничено способом, контроллером и модулем для сжатого воздуха, описанным, как пример; наоборот, такой способ в соответствии с изобретением для управления модулем для сжатого воздуха, контроллер и модуль для сжатого воздуха для осуществления такого способа могут быть выполнены в соответствии со всеми вариантами в пределах объема притязаний изобретения.

1. Способ управления модулем (1) для сжатого воздуха, содержащим одну или несколько сетей сжатого воздуха, а также множество сообщающихся контроллеров (6, 9, 13, 23, 24, 25 или 26) для управления компонентами, которые составляют часть упомянутой сети сжатого воздуха, отличающийся тем, что управление указанными компонентами выполняют так, что ни один из контроллеров (6, 9, 13, 23, 24, 25 или 26) не определяет рабочие условия всех компонентов, управляемых другими контроллерами.

2. Способ по п.1, отличающийся тем, что упомянутые компоненты модуля (1) для сжатого воздуха состоят, по меньшей мере, из ряда следующих компонентов: пользователь сжатого воздуха, источник сжатого воздуха, устройство обработки сжатого воздуха или клапан сжатого воздуха.

3. Способ по п.1 или 2, отличающийся тем, что он является последовательным, другими словами, несколько из упомянутых управляемых компонентов модуля (1) для сжатого воздуха установлены в виде заданной последовательности, и их включают или выключают, и/или регулируют в соответствии с упомянутой последовательностью на основе потребления сжатого воздуха модулем (1) для сжатого воздуха.

4. Способ по п.3, отличающийся тем, что компоненты разных типов установлены в виде отдельной последовательности.

5. Способ по п.3, отличающийся тем, что компоненты разных типов перемешаны в последовательностях.

6. Способ по п.3, отличающийся тем, что разные последовательности установлены оператором и/или определены на основе переменных величин, таких как время, дата, давление, расход, точка росы, качество воздуха и/или температура.

7. Способ по любому из пп.1, 2, 4-6, отличающийся тем, что разными управляемыми компонентами модуля (1) для сжатого воздуха управляют таким образом, что каждый из них работает в течение определенного промежутка времени, с тем, чтобы разнести по времени износ этих разных компонентов.

8. Способ по любому из пп.1, 2, 4-6, отличающийся тем, что компонентами модуля (1) для сжатого воздуха управляют таким образом, что техническое обслуживание этих компонентов можно осуществлять одновременно.

9. Способ по любому из пп.1, 2, 4-6, отличающийся тем, что в нем используют алгоритм сбережения энергии, при этом обеспечивают оптимизированное потребление энергии, по меньшей мере, частью модуля (1) для сжатого воздуха путем регулирования рабочей точки одного или нескольких из его компонентов.

10. Способ по любому из пп.1, 2, 4-6, отличающийся тем, что компонентами модуля (1) для сжатого воздуха управляют таким образом, что стоимость потребляемой энергии и технического обслуживания, ремонта и/или замены компонентов модуля (1) для сжатого воздуха и/или модуля (1) для сжатого воздуха в целом всегда ограничена до минимума.

11. Способ по любому из пп.1, 2, 4-6, отличающийся тем, что в нем применяют алгоритм управления, при этом модулем (1) для сжатого воздуха управляют таким образом, что один или несколько параметров согласуют с определенным целевым значением или один или несколько из этих параметров удерживают в пределах определенного диапазона путем управления соответствующими компонентами модуля (1) для сжатого воздуха посредством упомянутого контроллера (20).

12. Контроллер, представляющий собой часть из группы сообщающихся контроллеров в модуле (1) для сжатого воздуха, содержащем одну или несколько сетей сжатого воздуха, причем упомянутая группа сообщающихся контроллеров предусмотрена для управления компонентами, которые составляют часть упомянутых сетей сжатого воздуха, отличающийся тем, что упомянутый контроллер выполнен так, что он не определяет рабочие условия всех компонентов, управляемых другими контроллерами в модуле (1) для сжатого воздуха.

13. Модуль для сжатого воздуха, содержащий одну или несколько сетей сжатого воздуха, а также множество сообщающихся контроллеров (6, 9, 13, 23, 24, 25 или 26) для управления компонентами, которые представляют собой часть упомянутых сетей сжатого воздуха, отличающийся тем, что упомянутые контроллеры выполнены так, что ни один из них не определяет рабочие условия всех компонентов, управляемых другими контроллерами.



 

Похожие патенты:

Изобретение относится к насосным системам. .

Изобретение относится к гидроавтоматике и может быть использовано в силовых следящих гидроприводах, содержащих дистанционно управляемый регулируемый насос. .

Изобретение относится к области электрогидравлического следящего привода и может быть использовано в системах управления приводами, объектом управления которых является инерционная и статическая нагрузка (выходное звено), содержащих дистанционно управляемый регулируемый насос с электрической отрицательной обратной связью по положению регулирующего органа (люльки), имеющих датчик отрицательной обратной связи выходного звена по углу, энергонезависимый датчик скорости выходного звена и приводной механизм насоса, работающий независимо от сети электропитания блока управления.

Изобретение относится к области гидроавтоматики и может быть использовано в силовых следящих гидроприводах с дистанционно управляемым регулируемым насосом. .

Изобретение относится к транспортировке воды и нефтепродуктов с помощью насосно-трубопроводных комплексов, оборудованных центробежными электронасосами, и может быть использовано для контроля за их работой в реальном масштабе времени.

Изобретение относится к области машиностоения и может быть использовано в возвратно-поступательных поршневых насосах

Изобретение может быть использовано в двигателях внутреннего сгорания. Электронный масляный насос, выполненный с возможностью управления электронным блоком управления (ЭБУ), содержит, по меньшей мере, одно впускное отверстие для смазки, по меньшей мере, одно выпускное отверстие для смазки и, по меньшей мере, один поршень, перемещаемый между положением полного хода и полностью втянутым положением с целью перекачки смазки из впускного отверстия в выпускное отверстие. Насос содержит электрический исполнительный механизм, соединенный с поршнем для его перемещения, первый электрический провод, соединенный с первым элементом насоса для электрического соединения первого элемента с ЭБУ, и второй электрический провод, соединенный со вторым элементом насоса для электрического соединения второго элемента с ЭБУ. Когда поршень находится в положении полного хода, электрическая цепь между первым и вторым электрическими проводами замкнута, а когда поршень находится в положении, отличном от положения полного хода, электрическая цепь между первым и вторым электрическими проводами разомкнута. Раскрыты варианты способа управления двигателем, снабженным таким насосом. Технический результат заключается в создании нелинейной зависимости подачи смазки относительно частоты вращения двигателя. 3 н. и 16 з.п. ф-лы, 11 ил.

Изобретение относится к способу эксплуатации дозирующего насоса (12), в частности, подачи топлива для устройства обогрева транспортного средства. Дозирующий насос содержит поршень (14), перемещаемый возвратно-поступательно для подачи между начальным положением и конечным положением, и приводной блок (18), электрически возбуждаемый посредством приложения напряжения. Управление и/или регулирование напряжения для генерации эффективного напряжения производится для перевода поршня из начального положения в конечное положение. Эффективное напряжение в начальной фазе (t0-t1) принимает первый максимум (U1), а в примыкающей промежуточной фазе (t1-t2) является более низким, чем первый максимум. В соответствии с изобретением предусмотрено, что эффективное напряжение на следующей за промежуточной фазой конечной фазе (t2-t3) достигает второго максимума (U3). Эффективное напряжение во время начальной фазы и/или промежуточной фазы и/или конечной фазы может быть, соответственно, постоянным или определяться ступенчатой функцией. Изобретение также относится к устройству, содержащему дозирующий насос (12) и блок (20) управления/регулирования, который выполнен с возможностью управления напряжением, прикладываемым к приводному блоку (20) дозирующего насоса. Позволяет устройству быть невосприимчивым к температурным изменениям и/или к изменениям вязкости жидкости и/или противодавления, действующего на поршень. 2 н. и 13 з.п. ф-лы, 5 ил.

Погружной электронный блок может быть использован для управления погружным электродвигателем. Он содержит корпус 1 цилиндрической формы, закрытый с торцов основанием 3 и обращенной к двигателю головкой 2, элементы электронной схемы, размещенные в герметичном отсеке, гермовводы, служащие для электрического соединения электронной схемы с цепями электродвигателя, и контактный электрический разъем из контактов 7, 9. Блок снабжен шасси 11, имеющим сегментообразное поперечное сечение и выполненным из материала с высокой тепло- и электропроводностью. Шасси 11 установлено с возможностью теплового контакта с внутренней поверхностью корпуса 1. Силовые элементы 12 электронной схемы, в особенности силовые электронные модули, установлены на плоской поверхности шасси 11 и электрически связаны с гермовводами. Узлы соединения корпуса 1 с основанием 3 и головкой 2 выполнены герметичными с возможностью выдерживать высокое давление, образуя с внутренним объемом корпуса 1, основанием 3 и головкой 2 герметичный отсек. Изобретение направлено на расширение функциональных возможностей устройства. 4 з.п. ф-лы, 2 ил.

Изобретение относится к МГД-технике и может быть использовано в насосных установках для перекачивания электропроводных жидкостей. Технический результат состоит в повышении точности управления. Способ управления цилиндрическим линейным индукционным насосом заключается в регулировании амплитуды и частоты напряжения питания, для чего станавливают период регулирования подачи электропроводной жидкости потребителю, измеряют э.д.с., наводимую в электропроводной жидкости бегущим электромагнитным полем в перпендикулярном относительно оси насоса направлении, вычисляют расход электропроводной жидкости, который стабилизируют посредством коррекции амплитуды и/или частоты напряжения питания. Подачу электропроводной жидкости потребителю осуществляют с постоянным расходом в каждом периоде в форме импульса, длительностью меньшей или равной периоду регулирования подачи электропроводной жидкости. 1 ил.

Изобретение относится к гидравлическому приводу (1) с регулированием количества и/или давления для преобразователя давления устройства высокого давления, состоящему по существу из двигательного привода с насосом для рабочей среды (10), а также блока управления. В качестве гидравлического привода (1) применяется по существу насос (11) постоянной подачи, соответственно, насос (11), который за каждый оборот подает постоянный объем, с приводом от серводвигателя (12), при этом серводвигатель (12) выполнен с возможностью электрического управления (15), регулирования и/или переключения с помощью расположенных на стороне низкого давления средств (13) и/или с помощью расположенных на стороне высокого давления средств (14). Технический результат - улучшение работы устройства высокого давления. 3 з.п.ф-лы, 1 ил.

Изобретение относится к способу управления компрессорной станции. Способ управления компрессорной станцией (1), которая включает в себя по меньшей мере несколько объединенных друг с другом в сеть компрессоров (2), может не только формировать стратегии переключений посредством электронной системы (3) управления для оказания влияния на количество имеющейся в распоряжении одного или нескольких пользователей станции (1) сжатой текучей среды в станции (1), но и в состоянии приспосабливать имеющееся в распоряжении одного или нескольких пользователей станции (1) количество сжатой текучей среды к будущим условиям работы станции (1) адаптивно к отбираемому количеству сжатой текучей среды из станции. Перед запуском стратегии переключений разные стратегии переключений проверяют способом прогностического моделирования, взяв за основу модель станции (1), из проверенных стратегий переключений с помощью по меньшей мере одного установленного критерия качества выбирают относительно наиболее предпочтительную стратегию переключений и выбранную стратегию переключений направляют системе (3) для выполнения в станции. Изобретение направлено на обеспечение возможности заблаговременно предвидеть изменение давления в компрессорной станции. 3 н. и 35 з.п. ф-лы, 11 ил.
Наверх