Катод марганцево-цинкового химического источника тока

Изобретение относится к электротехнике, в частности к составу смеси для положительного электрода Mn, Zn щелочного химического источника тока. Согласно изобретению в катодную пористую структуру для диоксид-марганцевого химического источника тока на основе смеси МnО2, графита, дополнительно вводится диспергированный скелетный никель в соотношении (вес.%) МnО2 (10÷15):Ni (0,8÷1). Техническим результатом является улучшение проводимости катода, повышение емкости элемента, напряжения разряда при работе.

 

Изобретение относится к электротехнике, в частности к составу смеси для положительного электрода Mn, Zn щелочного химического источника тока (ХИТ).

Наиболее близким к предлагаемому техническому решению является электрод, состоящий из смеси MnO2, графита, соединений бария [1-3]. Однако использование соединений бария способствует снижению емкости ХИТ из-за уменьшения действующей активной массы катода, расширению элемента, возможны процессы образования гетеролитов, что может привести к внутреннему замыканию элемента.

Цель изобретения - улучшить проводимость диоксидмарганцевого катода за счет уменьшения механического разрушения при расширении, повысить напряжение элемента питания во время заряда-разряда перезаряжаемых щелочных ХИТ.

Согласно изобретению использование порошков скелетного никеля в составе катода позволяет улучшить проводимость электрода и снижает вспучивание катодной массы во время заряда и разряда элементов. Введение диспергированных порошков никеля улучшает эксплуатационные свойства элементов питания, так как скелетный никель является адсорбентом с развитой структурой микропор, что позволяет эффективно поглощать газообразные продукты во время работы элемента и его перезарядки. Данное свойство позволяет эффективно использовать эти продукты в процессах обратимой работы элемента, что повышает емкость элемента, напряжение разряда при работе. Сравнительные испытания элементов, содержащих диспергированный никель, равномерно распределенный по объему катодной массы и без него, показали, что в случае одноразового ХИТ емкость Mn, Zn-элемента в среднем выше на 20%. Цилиндрический Mn, Zn источник питания с никелем в составе катода (RLR-6AA) имеет напряжение разомкнутой цепи 1,6 B, емкость 2 А·ч, токи нагрузки - 150 мА·ч, а в импульсном режиме - до 500 мА. Время заряда 7÷8 часов при 25 мА, а в прототипе без никеля время заряда при 60 мА - 14 часов. Рабочий диапазон температур от -20 до +60°C позволяет вести зарядку независимо от степени использования активных масс в постоянном и импульсном режиме. Саморазряд в год - 2%. Перезаряжаемые до полной разрядки (0,9 В) первые 40 циклов имеют емкость в среднем 1,3÷1,6 A·ч, т.е. получаются почти равные циклы. Перезаряжаемые Mn, Zn батарейки при наличии скелетного никеля могут перезаряжаться от 100 до 600 раз в зависимости от использования и частоты перезарядки. Наличие никеля в катодной массе также увеличивает сохранность и работоспособность батарейки, через 5 лет хранения при 25°C остается 80% емкости в перезаряженном варианте.

Скелетный никель получали обработкой диспергированного сплава N:Al:Fe=49:50:1 (мас.%) в 6÷8 М КОН в течение 0,5÷1 часа при 5-10°C и 3÷4 часа при 95÷105°C с удалением раствора травления, содержащего алюминаты, через каждые полчаса с заменой на свежий раствор. Активный никелевый катализатор имел удельную поверхность до 100±2 м2/г, пористость 0,5±0,05 см3/см3, а максимальное распределение объема пор по радиусу отвечало средним размерам пор 2 мкм. Исходные образцы сплава Ni, Al, Fe имели средний радиус частиц 5 мкм. Соотношение CMnO2:CNi - 10÷15 к 0,8÷1 (вес.%) в составе катодной массы.

Источники информации

1. Вальтрауд Таухер, Карл Кордели, Джозеф Даниель-Айвад, №2096867, КИ кл.6, H01M 4/50 (1992).

2. Карл Кордели, №4929520 US, кл. H01M 2/18 (1990).

3. Карл Кордели, №4957827 US, кл. H01M 10/24 (1990).

Катодная пористая структура для диоксид-марганцевого химического источника тока на основе смеси МnО2, графита, отличающаяся тем, что дополнительно вводится диспергированный скелетный никель в соотношении, вес.%: MnO2(10÷15):Ni(0,8÷1).



 

Похожие патенты:

Изобретение относится к активному катодному материалу, обеспечивающему характеристики элемента, не подверженные отрицательному воздействию переразрядки, а также к вторичному литиевому элементу с его использованием.

Изобретение относится к новым материалам на основе металлических частиц с покрытием, предназначенных для применения в качестве активного материала положительного электрода в химических источниках тока.

Изобретение относится к производству электрохимических источников тока, осуществляемому в сочетании с утилизацией первичных химических источников тока, выработавших свой ресурс.

Изобретение относится к способу получения соединения на основе оксида лития и марганца со структурой шпинели и использования его во вторичных батареях. .
Изобретение относится к способу получения литированной шпинели литиево-марганцевого оксида. .

Изобретение относится к перезаряжаемым электрохимическим элементам с положительным электродом на основе диоксида марганца. .

Изобретение относится к способу получения диоксида марганца, в частности, для использования в качестве активного материала катода в электрохимических ячейках. .

Изобретение относится к материалу положительного электрода для электрического устройства. Материал положительного электрода для электрического устройства представлен формулой: (где 0<а<1, 0<х<0,5 и 0<y<0,3) и удовлетворяет выражению отношения 2х+y<1. Изобретение позволяет создать материал положительного электрода для электрического устройства, который обладает высокой емкостью и повышенным первоначальным КПД зарядки-разрядки. 2 н. и 4 з.п. ф-лы, 7 ил., 2 табл.

Изобретение относится к активному материалу положительного электрода литий-воздушного аккумулятора в виде нитевидных кристаллов состава KxMnO2 (x=0,1-0,15) длиной от 0,1 мкм до 2 мм и диаметром от 20 до 30 нм для обратимого восстановления кислорода на положительном электроде. А также относится к способу его получения, включающему растворение в воде перманганата калия и персульфата калия и перемешивание смеси при pH среды от 2 до 4 в течение 2-12 часов, при температуре 95°C с последующей фильтрацией, промывкой продукта и высушиванием при 60°C. Использование указанного материала позволяет достигать высокой удельной электрохимической емкости. 2 н.п. ф-лы, 5 ил., 1 табл., 2 пр.

Предложен активный материал положительного электрода для литий-ионной вторичной батареи, содержащий соединение, представленное следующей формулой состава: [Li1,5][Li0,5(1-x)Mn1-xM1,5x]O3, где x удовлетворяет соотношению 0,15≤x≤0,30, а M представлен формулой NiαCoβMnγ, в которой α, β и γ удовлетворяют соответственно соотношениям 0<α≤0,5; 0≤β≤0,33 и 0<γ≤0,5, причем полуширина пика от кристаллической плоскости (001) соединения, измеренная методом рентгеновской дифракции, составляет в диапазоне от 0,19 до 0,212 включительно, а средний диаметр первичных частиц соединения составляет в диапазоне от 0,19 мкм до 0,25 мкм включительно. Также изобретение относится к литий-ионной вторичной батарее. Использование настоящего изобретения позволяет обеспечить активный материал положительного электрода, способный легко изменять кристаллическую структуру в связи с выделением Li и обеспечивающий высокую обратимую емкость. 2 н. и 1 з.п. ф-лы, 2 табл., 8 ил.

Изобретение относится к аккумуляторной батарее, включающей в себя положительный электрод, который может поглощать и выделять литий, и жидкий электролит. При этом положительный электрод содержит активный материал положительного электрода, который работает при потенциале 4,5 В или выше по отношению к литию; и при этом жидкий электролит содержит фторированный простой эфир, представленный следующей формулой (1), и циклический сульфонат, представленный следующей формулой (2): (1). Причем в формуле (1) R1 и R2, каждый независимо, обозначают алкильную группу или фторированную алкильную группу, и по меньшей мере один из R1 и R2 является фторированной алкильной группой; и (2), где в формуле (2) A и B, каждый независимо, обозначают алкиленовую группу или фторированную алкиленовую группу, а X обозначает одинарную связь или группу -OSO2-. 9 з.п. ф-лы, 1 ил., 5 табл., 35 пр.

Активный материал положительного электрода для электрического устройства содержит первый активный материал и второй активный материал. Первый активный материал состоит из оксида переходного металла, представленного формулой (1): Li1,5[NiaCobMnc[Li]d]O3 …(1), где в формуле (1) a, b, c и d удовлетворяют соотношениям: 0<d<0,5; a+b+c+d=1,5; и 1,0<a+b+c<1,5. Второй активный материал состоит из оксида переходного металла шпинельного типа, представленного формулой (2) и имеющего кристаллическую структуру, относящуюся к пространственной группе Fd-3m: LiMa'Mn2-a'O4 …(2), где в формуле (2) M является по меньшей мере одним элементом-металлом с валентностью 2-4, и a' удовлетворяет соотношению: 0≤a'<2,0. Относительное содержание первого активного материала и второго активного материала удовлетворяет, в массовом отношении, соотношению, представленному выражением (3): 100:0<MA:MB<0:100…(3) (где в формуле (3) MA является массой первого активного материала, и MB является массой второго активного материала). Повышение эффективности заряда/разряда аккумуляторной батареи с таким материалом является техническим результатом изобретения. 3 н. и 10 з.п. ф-лы, 4 ил., 6 табл.

Изобретение относится к технологии получения материала на основе смешанного оксида лития и марганца со структурой шпинели для использования его во вторичных батареях. Предложен способ получения литированного двойного оксида лития и марганца состава Li1+xMn2O4, где 0,20<x<1,25, заключающийся в том, что механически готовят однородную смесь из гидрида лития LiH и манганита лития LiMn2O4 с мольным соотношением LiH : LiMn2O4, равным 0,2÷1,25, готовую смесь отжигают в атмосфере аргона при температуре 250÷300°С в течение 1÷2 часов, затем изменяют атмосферу аргона на атмосферу воздуха и дополнительно отжигают при тех же температурах в течение 0,2÷1 часа. Изобретение позволяет получать материал с заданным и однородным составом, характеризующийся повышенным содержанием лития, что обеспечивает повышенную емкость батареи, а также хорошей совместимостью с портативными системами. 1 ил., 3 пр.
Наверх