Способ автоматической оптимизации процесса горения в топке барабанного парового котла

Изобретение относится к теплоэнергетике, касается автоматизации барабанных паровых котлов, а именно экономичности процесса горения в топке. Технический результат изобретения - повышение точности оптимизации процесса горения в топке барабанного парового котла, работающего в переменных режимах, характерных для котлов, в которых утилизируются вторичные энергетические ресурсы технологических процессов, повышение КПД котла. Способ автоматической оптимизации процесса горения в топке барабанного парового котла, имеющего топочные экраны, путем измерения параметров, характеризующих КПД котла и соотношение топливо-воздух соответственно, определения отклонений измеренных сигналов от своих заданных значений и последующего изменения с помощью корректирующего регулятора расхода воздуха по сумме этих отклонений, отличается тем, что в качестве параметров, характеризующих КПД котла и соотношение топливо-воздух, используют: текущий тепловой поток, поступающий из топки в циркуляционный контур барабанного котла; текущий тепловой поток, вносимый в топку котла с топливом; корреляционное измерение временного сдвига указанных тепловых потоков; синхронизированное отношение указанных тепловых потоков и определяют корреляцию указанного отношения с расходом воздуха, по которой осуществляют экстремальное регулирование. 4 ил.

 

Изобретение относится к теплоэнергетике, касается автоматизации барабанных паровых котлов, а именно экономичности процесса горения в топке.

Известен способ автоматической оптимизации процесса горения в топке барабанного парового котла, имеющего топочные экраны, путем последовательного изменения расхода воздуха, подводимого к горелкам, с помощью регулятора поиска, причем дополнительно измеряют и стабилизируют величину химического недожога в дымовых газах в заданных пределах, измеряют повышение содержания кислорода в дымовых газах над заданным значением и последовательно изменяют расход воздуха, подводимого к каждой горелке, с помощью регулятора поиска до появления в продуктах сгорания соответствующей горелки химического недожога, определяемого по увеличению химического недожога в дымовых газах [А.С. № 735869].

Недостаток этого способа состоит в том, что он не обеспечивает оптимального содержания кислорода, так как оптимальное содержание кислорода не является постоянным в процессе эксплуатации, его значение зависит от многих факторов (паровой нагрузки, качественного состава топлива, потерь теплоты с уходящими газами и др.). Данный недостаток особенно проявляется для котлов, в которых утилизируются вторичные энергетические ресурсы технологических процессов, например доменный газ в металлургии.

Указанный недостаток снижает точность поддержания максимального КПД.

Наиболее близким аналогом к заявляемому объекту является способ автоматической оптимизации процесса горения в топке барабанного парового котла, имеющего топочные экраны, путем измерения параметров, характеризующих КПД котла и соотношение топливо-воздух соответственно, определения отклонений измеренных сигналов от своих заданных значений и последующего изменения с помощью регулятора поиска оптимального расхода воздуха по сумме этих отклонений, причем в качестве параметров, характеризующих КПД котла и соотношение топливо-воздух, используют тепловосприятие топочных экранов и разность расходов пара и воздуха соответственно [А.С. № 1064078].

Недостатком этого способа является следующее. Экономичность процесса горения в топке характеризуется отношением тепла, выработанного в топке, к теплу, внесенного в топку с топливом. В переменных режимах при изменениях расхода и калорийности топлива сигнал по тепловосприятию топочных экранов характеризует лишь одну сторону отношения, определяющего экономичность процесса горения. Вторую сторону отношения - тепло, вносимое в топку с топливом, - сигнал по тепловосприятию топочных экранов не учитывает. Данный недостаток проявляется в переменных режимах, характерных для котлов, в которых утилизируются вторичные энергетические ресурсы технологических процессов.

Указанный недостаток снижает точность поддержания максимального КПД.

Цель изобретения - повышение точности оптимизации процесса горения в топке барабанного парового котла, работающего в переменных режимах, характерных для котлов, в которых утилизируются вторичные энергетические ресурсы технологических процессов, повышение КПД котла.

Поставленная цель достигается тем, что способу автоматической оптимизации процесса горения в топке барабанного парового котла, имеющего топочные экраны, путем измерения параметров, характеризующих КПД котла и соотношение топливо-воздух соответственно, определения отклонений измеренных сигналов от своих заданных значений, последующего изменения с помощью корректирующего регулятора расхода воздуха по сумме этих отклонений и осуществления экстремального регулирования, в отличие от ближайшего аналога в качестве параметров, характеризующих КПД котла используют: текущий тепловой поток, поступающий из топки в циркуляционный контур барабанного котла; текущий тепловой поток, вносимый в топку котла с топливом; корреляционное измерение временного сдвига указанных тепловых потоков; синхронизированное отношение указанных тепловых потоков и определяют корреляцию указанного отношения с расходом воздуха, по которой осуществляют экстремальное регулирование.

На фиг.1 изображена функциональная схема автоматической системы экстремального регулирования; на фиг.2 - схема регулирования подачи воздуха по соотношению «нагрузка-воздух» с оптимальной коррекцией по сигналу корреляционного коэффициента по воздуху rтв(t); на фиг.3 - временные характеристики корреляционного коэффициента по воздуху rтв(t); на фиг.4 - временные характеристики доли природного газа в выработке тепла барабанным паровым котлом.

Система (фиг.1) состоит из двух контуров. Стабилизирующий контур образуют объект 1 регулирования и автоматический регулятор 2 подачи общего воздуха, действующий по упрощенной схеме нагрузка zн - воздух Qв. Контур оптимальной коррекции составляет объект 1 регулирования и корректирующий регулятор 3.

Процесс автоматической оптимизации процесса горения в топке барабанного парового котла осуществляется следующим образом.

Корректирующий регулятор 3 вырабатывает корректирующий сигнал укор на основе сигнала rтв(t), поступающего с вычислительного устройства 6. Вычислительное устройство 6 вырабатывает сигнал rтв(t) на основе сигналов текущих отклонений от соответствующих средних значений расхода воздуха Qв(t) и КПД топочных процессов ηт(t). Сигнал КПД топочных процессов ηт(t) вырабатывает вычислительное устройство 5 на основе сигналов тепла Qвх(t-τ(t)), вносимого в топку котла с топливом, с временным сдвигом τ(t), определяемым корреляционным измерителем 4, и теплового потока Qц.к(t), поступающего из топки в циркуляционный контур барабанного котла. Сигналы Qвх(t) и Qц.к(t) снимаются с измерительных устройств котла [Плетнев Г.П. Автоматизированное управление объектами тепловых электростанций. - М.: Энергоиздат, 1981. - С.228-230].

Корреляционный измеритель 4 представляет собой вычислительное устройство (Техническая кибернетика. Теория автоматического регулирования. Кн.2. Анализ и синтез линейных непрерывных и дискретных систем автоматического регулирования./Под ред. В.В.Солодовникова. М., Машиностроение, 1967, с.38-40), реализующее вычисление сигнала запаздывания r(t) на основе решения экстремальной задачи

.

Смысл экстремальной задачи состоит в том, что на ее основе по параметру τ в каждый момент времени t определяется максимум коэффициента корреляции

M[Qвх(t-τ)Qц.к(t) между отклонениями Qвх(t-τ), Qц.к(t) от средних значений, М{·} - операция текущего усреднения случайных величин.

Устройство 5 вычисляет КПД топочных процессов по соотношению

,

где учет запаздывания τ(t) позволяет осуществлять синхронизацию потоков тепла Qвх(t) и Qц.к(t).

Устройство 6 представляет собой вычислитель корреляционного коэффициента

rтв(t)=M{ΔQв(t)·Δηт(t)},

здесь ΔQв(t), Δηт(t) - текущие отклонения значений тепла, вносимого в топку котла с топливом, и КПД топочных процессов от соответствующих средних значений; М{·} - операция текущего усреднения случайных величин.

Корреляционный коэффициент по воздуху определяет направление поиска оптимального значения расхода воздуха из условия максимума КПД топочных процессов ηт(t).

Предложенный способ экспериментально проверялся на котле «Ганомаг» при совместном сжигании доменного и природного газа. Ставилась задача снижения объема потребляемого природного газа за счет оптимизации процесса горения. Схема регулирования подачи воздуха в эксперименте представлена на фиг.2, где 7 - регулятор задания по нагрузке; Δpв.г - перепад давления на воздухоподогревателе, представляющий сигнал отрицательной обратной связи; ЗРУ - задатчик ручного управления. По корреляционному коэффициенту rтв(t) оценивалась величина избытка (недостатка) расхода воздуха (фиг.3). Положительные значения rтв(t) свидетельствуют о недостаточной подаче воздуха, отрицательные - об избытке. Импульсами иллюстрируются временные зоны избытка (недостатка) расхода воздуха (фиг.3). Далее с помощью регулятора достигалось оптимальное значение расхода воздуха. Анализ временных характеристик (фиг.3 и 4) показывает, что в зонах оптимального расхода воздуха доля природного газа в выработке тепла принимает минимальные значения. Введение оптимальной коррекции по воздуху позволило снизить долю природного газа в выработке тепла, при этом КПД котла повысилось на 2% (фиг.4).

Экспериментальные исследования выявили преимущество предлагаемого способа автоматической оптимизации процесса по сравнению с ближайшим аналогом, которое состоит в следующем. Достижение сигналом по тепловосприятию топочных экранов максимального значения не во всех режимах соответствует оптимальному значению КПД котла. Здесь в случае роста калорийности топлива при постоянном расходе воздуха в топке котла не будет происходить дополнительная выработка тепла. Поэтому сигнал по тепловосприятию топочных экранов, используемый в прототипе для поиска оптимального значения воздуха, останется неизменным. Вследствие этого экстремальный регулятор в данном случае не будет оперативно задействован, что приведет к снижению КПД котла. В предлагаемом способе данный случай исключается, т.к. примененный здесь текущий показатель КПД топочных процессов ηт чувствителен к теплу Qвх, внесенного в топку котла с топливом.

Способ автоматической оптимизации процесса горения в топке барабанного парового котла, имеющего топочные экраны, путем измерения параметров, характеризующих КПД котла и соотношение топливо-воздух соответственно, определения отклонений измеренных сигналов от своих заданных значений, последующего изменения с помощью корректирующего регулятора расхода воздуха по сумме этих отклонений и осуществления экстремального регулирования, отличающийся тем, что в качестве параметров, характеризующих КПД котла, используют текущий тепловой поток, поступающий из топки в циркуляционный контур барабанного котла; текущий тепловой поток, вносимый в топку котла с топливом; корреляционное измерение временного сдвига указанных тепловых потоков; синхронизированное отношение указанных тепловых потоков и определяют корреляцию указанного отношения с расходом воздуха, по которой осуществляют экстремальное регулирование.



 

Похожие патенты:

Изобретение относится к автоматизации теплоэнергетических объектов, в частности к автоматическому регулированию котла с пылесистемами прямого вдувания. .

Изобретение относится к системе управления подачей и сжиганием пылевидного топлива. .

Изобретение относится к области теплоэнергетики и может быть использовано при регулировании подачи воздуха в топку отопительного котла. .

Изобретение относится к теплоэнергетике, а именно к автоматическому регулированию процесса горения в топке котлоагрегата. .

Изобретение относится к устройству для регулирования топливоокислительной смеси в подводящем трубопроводе горелки, содержащему устройство для изменения состава топливоокислительной смеси и измерительный прибор для регистрации состояния топливоокислительной смеси при горении, а также схему для управления устройством для изменения состава в зависимости от зарегистрированного измерительным прибором состояния.

Изобретение относится к способу определения среднего излучения и соответствующей этому излучению средней температуре участка поверхности горящего слоя при помощи инфракрасной или термографической фотокамеры в установках сжигания и регулирования процесса горения, по меньшей мере, в контролируемом участке поверхности этой установки сжигания.

Изобретение относится к теплоэнергетике, в частности к автоматизации процессов горения в тепловых установках. .

Изобретение относится к способу управления работой горелок, в частности к регулированию отношения топливо/воздух для горелок, применяемых при плавке меди. .

Изобретение относится к устройству (20) измерения давления для измерения давления в среде горения внутри газовой турбины, к способу измерения давления в среде горения внутри газовой турбины

Изобретение относится к области теплоэнергетики и может быть использовано для контроля и регулирования режима горения теплогенерирующих установок

Изобретение относится к теплоэнергетике, используется в системах автоматического регулирования паровых и водогрейных котлов. Техническим результатом изобретения является нахождение и поддержание режима работы котла с максимальным КПД путем регулирования соотношения «топливо-воздух» в топке котла изменением расхода дутьевого воздуха. Для этого постоянно измеряют расход воды, проходящей через котел, и температуры ее на входе и выходе котла, по значениям которых рассчитывают значение тепловой мощности котла, первоначально увеличивают расход воздуха рабочим органом на величину порядка 2%, через время тепловой инерции сопоставляют текущее значение тепловой мощности с предыдущим значением и дают команду рабочему органу на увеличение расхода воздуха в случае, если мощность оказалось больше предыдущего значения, или на уменьшение расхода, если мощность оказалась меньше предыдущего значения. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области энергетики. Дозатор включает в себя дозирующую емкость (DB) и, по меньшей мере, один шлюз (S), расположенный выше по потоку, для плавной, непрерывной, дозированной подачи пылевидного насыпного материала из легких, полидисперсных частичек из устройства обеспечения (В, SG) в несколько транспортных труб (FR1, FR2, FR3) к потребителю, расположенному ниже по потоку, причем дозирующая емкость (DB) и шлюз (S) имеют по одному разгрузочному устройству (AE/DB, AE/S) и причем на каждой транспортной трубе (FR1, FR2, FR3) установлен зонд для измерения потока материала (FIC1, FIC2, FIC3), а дозирующее устройство имеет регулятор давления для регулирования разности давлений между дозирующей емкостью (DB) и потребителем. Разгрузочное устройство (AE/DB) дозирующей емкости (DB) для каждой из транспортных труб (FR1, FR2, FR3) имеет ей принадлежащий и в нее входящий регулятор течения пылевидного потока (FI1, FI2, FI3), причем зонд для измерения потока материала (FIC1, FIC2, FIC3) соединен с регулятором течения пылевидного потока (FI1, FI2, FI3), который входит в соответствующую транспортную трубу (FR1, FR2, FR3), и разгрузочное устройство (AE/S) шлюза (S) входит через регулятор течения пылевидного потока (F14) в дозирующую емкость (DB). Регулятор давления для первого регулирования разности давлений (PDC1-2) в шлюзе (PIS1) и дозирующей емкости (РI2) соединен, по меньшей мере, с одним измерителем давления (PIS1), принадлежащим шлюзу (S), и одним измерителем давления (PI2), установленным на дозирующей емкости (DB), для второго регулирования разности давления (PDC3-R) в дозирующей емкости при разгрузке и в потребителе соединен с измерителем давления (РI3), принадлежащим разгрузочному устройству (AE/DB) дозирующей емкости (DB), и измерителем давления (PIR), который включает регулирование разности давлений между дозирующей емкостью (DB) и потребителем, причем регулятор давления управляет давлением в дозирующей емкости (РI3) в зависимости, по меньшей мере, от второго регулирования разности давлений (PDC3-R), и причем регулятор давления для первого управления разностью давления (PISA4-PIS1) между давлением в устройстве обеспечения (PISA4) и давлением в шлюзе (PIS1) соединен с измерителем давления (PISA4), принадлежащим устройству обеспечения (SG, В), и с измерителем давления (PIS1) шлюза (S), и управляет давлением в шлюзе (PIS1) в зависимости, по меньшей мере, от одного уровня наполнения шлюза (LIS/S) и первого регулирования разности давлений (PISA4-PIS1) путем приведения в действие, по меньшей мере, одного вытяжного устройства (V), выполненного с возможностью соединения со шлюзом (S). Изобретение позволяет обеспечить непрерывную, дозированную подачу пылевидного топлива. 3 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к способу управления воздушным потоком, подаваемым в камеру сгорания, и к камере сгорания. Камера сгорания газовой турбины содержит корпус с трубопроводом подачи топлива для подачи топлива в корпус и трубопроводом подачи воздуха-носителя для подачи воздуха в корпус. Упомянутая камера сгорания также содержит регулирующую систему для регулировки массового расхода воздуха-носителя, подаваемого в корпус, согласно характеристикам топлива. Трубопровод подачи топлива и трубопровод подачи воздуха-носителя соединены с по меньшей мере общим соплом. По меньшей мере общее сопло используется как для впрыскивания топлива, так и воздуха-носителя. Регулирующая система выполнена с возможностью поддержания импульса топлива и воздуха-носителя, по существу постоянным. Регулирующая система содержит датчик для измерения отличительной характеристики топлива, дросселирующий клапан, соединенный с трубопроводом подачи воздуха-носителя, блок управления, для управления дросселирующим клапаном на основании отличительной характеристики топлива, измеренной датчиком. Обеспечивается корректировка смешиваемых количеств топлива и воздуха, снижение выбросов и эффективная работа, в том случае, когда состав топлива изменяется со временем. 3 н. и 7 з.п. ф-лы, 5 ил.

Изобретение относится к энергетике. Способ регулирования расхода воздуха в компрессор газотурбинных установок бинарного энергоблока, который осуществляется путем изменения угла открытия входного направляющего аппарата компрессора, измерения поступающего в компрессор массового расхода воздуха, который стабилизируют на заданном уровне, при этом скорость изменения угла открытия входного направляющего аппарата компрессора ограничивают максимально допустимой скоростью нагружения газовой турбины. Также представлено устройство регулирования расхода воздуха в компрессор газотурбинных установок бинарного энергоблока. Изобретение позволяет повысить точность регулирования расхода воздуха, а также оптимизировать режим работы газотурбинной установки и энергоблока путем устранения возникающего дисбаланса между заданным расходом топлива и неконтролируемым «плавающим» массовым расходом воздуха при естественных колебаниях температуры и давления наружного воздуха. 2 н. и 2 з.п. ф-лы, 4 ил.

Изобретение относится к способу контроля и управления горением в работающих на основе газообразного топлива горелках для таких устройств, как бойлеры, цилиндрические баки-аккумуляторы горячей воды, камины и т.п. Технический результат направлен на точность и стабильность способа и системы управления. Описаны способ контроля и управления горением в горелке и система управления горением в горелке работающего на газообразном топливе устройства, работающая в соответствии со способом. Способ контроля и управления горением в горелке (1) работающего на газообразном топливе устройства типа, содержащего датчик (8) с электродом (E1), расположенным в пламени или рядом с ним и выполненным с возможностью запитывания от генератора напряжения, а также соединенным с электронной схемой, выполненной с возможностью измерения результирующего потенциала на этом электроде. Способ содержит первую фазу получения и обработки данных из экспериментальных условий и вторую фазу оценки требуемой характеристики горения при фактических рабочих условиях горелки. На первой фазе заранее выбирают множество экспериментальных условий горения для горелки (1), подают на горелку при каждом из упомянутых условий мощность (P1, P2, Pn) и дополнительный значимый параметр характеристик (K1, K2, Км) горения, при этом при каждом из экспериментальных условий подают на упомянутый электрод (E1) сигнал электрического напряжения и выполняют выборку сигнала отклика, рассчитывая на основании последовательности выборочных значений характеристические параметры формы волны сигнала для каждого из экспериментальных условий, с целями расчета функции корреляции на основании полученных экспериментальных данных, способных однозначно скоррелировать мощность и дополнительный значимый параметр горения. На второй фазе подают при фактическом рабочем режиме сигнал электрического напряжения на электрод (E1), а после отключения подаваемого сигнала выполняют серию выборок результирующего сигнала отклика на этом электроде. Так же на второй фазе рассчитывают на основании последовательности выборочных значений соответствующие характеристические параметры формы волны сигнала отклика для рабочего режима и рассчитывают оцененное значение характеристики горения, используя функцию корреляции. 2 н. и 12 з.п. ф-лы, 2 ил.
Наверх