Способ плазменной обработки поверхности

Изобретение относится к способу плазменной обработки поверхности внутри полого тела. Способ включает несколько технологических стадий. Первоначально заполняют полое тело (4) технологическим газом. Полое тело имеет одну стенку, выполненную из диэлектрического материала, Обеспечивают газонепроницаемость путем герметизации полого тела (4). Затем вводят полое тело (4) в пространство (5) между по меньшей мере двумя электродами (1, 2). Полое тело герметизировано для обеспечения газонепроницаемости. В пространстве (5) за пределами полого тела преобладает внешнее давление по меньшей мере 0,05 МПа (0,5 бар). Во внутренней камере полого тела преобладает внутреннее давление также по меньшей мере 0,05 МПа (0,5 бар). Пространство (5) между электродами (1, 2) заполнено газом. Для газа требуется более высокая напряженность поля для зажигания в случае внешнего давления, чем для технологического газа в случае внутреннего давления. Внешнее давление поддерживают не выше внутреннего давления. Зажигание плазмы происходит внутри полого тела (4) путем приложения между электродами (1, 2) достаточно высокого напряжения переменного тока. Техническим результатом изобретения является простота способа обработки поверхности полого тела. 21 з.п. ф-лы, 5 ил.

 

Настоящее изобретение относится к способу плазменной обработки поверхности внутри полого тела.

Из области техники известно, как обрабатывать поверхности плазмой для того, чтобы в результате получить модифицированные поверхностные свойства. Например, такой способ описан в DE 4318086 А1, где плазму зажигают внутри полого тела. Однако способы описанного в этом документе типа имеют такой недостаток, как относительно высокая сложность из-за того, что полые тела, предназначенные для обработки по внутренней поверхности, сначала необходимо вакуумировать для получения достаточно низкого внутреннего давления, для зажигания плазмы низкого давления.

Целью настоящего изобретения является разработка сопоставимого способа обработки поверхности полого тела, который можно осуществлять значительно проще.

Этой цели достигают согласно изобретению путем способа, обладающего признаками, изложенными в п.1 формулы изобретения. Преимущественные варианты осуществления изобретения раскрыты в зависимых пунктах.

Предложенный способ включает следующие стадии:

- заполнение полого тела, имеющего одну стенку, выполненную из диэлектрического материала, технологическим газом,

- обеспечение газонепроницаемости путем герметизации полого тела,

- введение полого тела, герметизированного для обеспечения газонепроницаемости, в пространство по меньшей мере с двумя электродами, причем в этом пространстве за пределами полого тела преобладает внешнее давление по меньшей мере 0,05 МПа (0,5 бар), в то время как во внутренней камере полого тела преобладает внутреннее давление также по меньшей мере 0,05 МПа (0,5 бар), а пространство между электродами заполнено газом, для которого требуется более высокая напряженность поля для зажигания в случае внешнего давления, чем для технологического газа в случае внутреннего давления, и

- зажигание плазмы внутри полого тела приложением к электродам достаточно высокого напряжения переменного тока.

В результате применения данного способа можно обработать поверхность внутренней стенки полого тела как таковую и/или наружную поверхность предмета, заранее введенного в полое тело, т.е. нанести покрытие и/или создать на поверхности функциональные группы. По сравнению с известными способами низкого давления предложенный здесь способ отличается исключительной простотой и, следовательно, низкими технологическими и инвестиционными затратами, потому что в результате относительно высокого внешнего давления можно обойтись без сложного вакуумирования устройства, которое используют для осуществления способа. Это также становится возможным потому, что плазму саму по себе зажигают при относительно высоком давлении, а именно при упомянутом выше внутреннем давлении. Следовательно, является неожиданным, что требуемых эффектов можно достигать при помощи плазмы, полученной при таком высоком давлении.

В результате того, что сложное вакуумирование технологической камеры становится ненужным, предложенный способ можно также легко внедрять в существующие технологические цепочки и, таким образом, его можно осуществлять непрерывным образом. Более того, способ исключительно гибок в отношении используемого в полом теле диэлектрического материала и геометрии полого тела. В качестве материала для стенки полого тела можно использовать, в частности, полипропилен или другой полимер, стекло или керамические материалы. Следовательно, полое тело можно конфигурировать в виде пакета, т.е., в частности, с гибкими стенками, или даже в виде бутыли или канистры. Преимущественно способ также сопровождается исключительно низким потреблением технологического газа, поскольку требуется только однократное заполнение полого тела и не требуется поддержание потока технологического газа во время горения плазмы. Следовательно, применение дорогих газов, таких как, например, гелий в качестве технологического газа становится экономичным.

Типичный вариант осуществления способа обеспечивает зажигание плазмы исключительно внутри полого тела. Это возможно, поскольку для технологического газа внутри полого тела требуется более низкая напряженность поля для зажигания (и, следовательно, более низкое напряжение зажигания), чем для газа, присутствующего в пространстве за пределами полого тела.

В предпочтительном варианте осуществления способа внешнее давление и/или внутреннее давление составляет не более 1 МПа (10 бар), чтобы производство плазмы не требовало слишком высоких температур. Предпочтительно, внешнее давление и/или внутреннее давление следует выбирать от 0,08 МПа до 0,2 МПа (от 0,8 бар до 2 бар). Давление в этом интервале можно получить очень легко, с другой стороны, такое давление позволяет получить плазму не слишком высокой температуры. Способ можно осуществлять особенно простым путем при внешнем давлении, соответствующем атмосферному давлению. Внутреннее давление, в свою очередь, можно выбирать так, чтобы оно было таким же, как внешнее давление или немного выше, предпочтительно не более, чем на 0,1 МПа (1 бар) выше внешнего давления. Это позволяет обеспечить простое заполнение полого тела технологическим газом без сложного откачивания и, в то же время, поддерживать не слишком высокое внутреннее давление, которое могло бы потребовать слишком высоких температур плазмы и, как следствие, привести к разрушению полого тела. Если внутреннее давление выбирают, по меньшей мере, такое же, как и внешнее давление, способ упрощается, с одной стороны, потому что заполнение полого тела при этом не представляет трудностей, с другой стороны, гарантировано, в частности при использовании полого тела с гибкими стенками, что полое тело сохранит свою форму.

Типичные области применения этого способа предусматривают, чтобы полое тело имело толщину стенки от 10 мкм до 5 мм, предпочтительно, от 50 мкм до 2 мм. В частности, полое тело может иметь такие размеры, что его наименьший диаметр (наибольшая протяженность в наименьшем измерении) составляет по меньшей мере 2 см, предпочтительно, по меньшей мере 6 см. Следовательно, обеспечивают, чтобы внутри полого тела находилось достаточное количество технологического газа для достижения равномерной плазменной обработки поверхности без повторного заполнения технологическим газом.

В отношении по возможности наиболее равномерной обработки поверхности полого тела как такового или предмета, находящегося в нем, плазму получают согласно предпочтительным вариантам осуществления изобретения в виде объемной плазмы, проходящей от одной стенки полого тела до противоположной стенки полого тела, и возможно, она может заполнять все внутреннее пространство полого тела.

Для того чтобы получить плазму требуемого качества, напряжение переменного тока между электродами можно выбирать таким, чтобы оно имело амплитуду напряжения от 1 кВ до 50 кВ, предпочтительно, от 1 кВ до 20 кВ. Предпочтительно, для зажигания и поддержания плазмы следует подавать электрическую энергию от 100 Вт до 5 кВт. Преимущественно, для удовлетворительной обработки поверхности, части обрабатываемой поверхности находятся в контакте с плазмой в течение от 5 с до 300 с. Можно обеспечить перемещение полого тело между электродами, преимущественно при равномерном движении, одновременно подавая на электроды напряжение переменного тока и поддерживая плазму, чтобы все части обрабатываемой поверхности находились в контакте с плазмой в течение подходящего времени.

Электроды могут представлять собой стержни (штыри), или по меньшей мере один стержень и одну пластину, или две пластины. Использование стрежней дает преимущество в том, что можно получить достаточно высокую напряженность поля относительно простым способом, чтобы инициировать коронный разряд, в то время как использование пластин дает преимущество в производстве объемной плазмы большего диаметра. Следовательно, особые преимущества имеет компоновка, в которой один электрод имеет конфигурацию пластины, в то время как второй электрод имеет конфигурацию стержня, вместо которого можно использовать множество стержней одинаковой полярности. С целью по возможности более равномерной обработки поверхности по меньшей мере один электрод, предпочтительно имеющий форму стержня, или множество электродов, имеющих форму стержня, можно перемещать во время плазменной обработки поверхности.

Один вариант осуществления изобретения предусматривает, чтобы полое тело опиралось, по меньшей мере, на один электрод после введения в область между электродами. В результате уменьшается область за пределами электрода, что облегчает сгорание плазмы исключительно внутри полого тела.

В частности, в качестве технологического газа могут использоваться гелий или аргон, или другие благородные газы, или газовые смеси, содержащие один или более этих благородных газов. Следовательно, внутри полого тела можно получить достаточно низкую напряженность поля для зажигания. Для получения более высокой напряженности поля для зажигания вне полого тела можно в качестве газа, который заполняет пространство между электродами вне полого тела, использовать вместо воздуха хладагент, такой как, например, SF6. В таком случае, в качестве технологического газа можно использовать воздух или технологический газ на основе воздуха.

Преимущественно перемешивать предшественник или множество предшественников с технологическим газом, при этом предшественники обеспечивают требуемую модификацию обработанной поверхности в том смысле, в каком они вносят вклад в функциональность поверхности и/или обеспечивают нанесение покрытия на поверхность осаждением. В самом простом способе такой предшественник можно добавлять в технологический газ, при этом технологический газ или исходный газ для технологического газа, например гелий, пропускают через соответствующий предшественник перед заполнением полого тела. В зависимости от требуемого эффекта можно использовать очень разные предшественники. Так, например, применение предшественников на основе кремния может привести к образованию на обработанной поверхности барьера миграции или диффузионного барьера. В частности, чтобы получить более гидрофильные поверхности, в качестве предшественника можно использовать, например, тетраметоксисилан (ТМОС). При использовании гексаметилдисилоксана (ГМДСО) или, возможно, также фторсодержащих предшественников можно получить гидрофобные или олеофобные поверхности. При применении моновинилового эфира диэтиленгликоля можно получить поверхности, непроницаемые для белков. Наконец, можно использовать предшественники для создания функциональных групп на обработанной поверхности, при этом предшественники образуют амино-, эпокси-, гидрокси- или группы карбоновой кислоты. В качестве предшественников, которые образуют аминогруппы возможно применять формир-газ, аминопропилтриметоксисилан (АПТМС) или аммиак; в качестве предшественников, образующих эпоксигруппы, можно применять, например, глицидилметакрилат; для получения гидроксильных групп можно использовать предшественники, содержащие кислород, а в качестве предшественников для получения групп карбоновой кислоты подходящими являются, например, ангидрид малеиновой кислоты или акриловая кислота.

Типичный вариант осуществления описанного способа предусматривает, что на поверхность внутренней стенки полого тела наносят покрытие и/или создают функциональные группы. Другой преимущественный вариант осуществления способа предусматривает, что в качестве альтернативы или дополнительно обрабатывают внешнюю поверхность объекта, заранее помещенного в полое тело, или множество объектов, помещенных в полое тело, в частности с нанесенным покрытием или с функциональными группами, полученными иным способом. С этой целью соответствующий объект можно помещать, например, в пакет, который затем герметизируют, например, сваркой, так, что остается только маленькое отверстие для подачи технологического газа, после чего в полое тело подают технологический газ, и полностью герметизируют полое тело. Газонепроницаемую герметизацию полого тела можно также получать перекрытием клапана подачи технологического газа (это применимо также к варианту осуществления способа, в котором обрабатывают только поверхность внутренней стенки полого тела).

Конечно, для таких способов можно использовать также объекты другого типа, отличные от полых тел, чтобы обрабатывать наружную поверхность объектов. Обрабатываемый объект может представлять собой, например, пробку или пластину микротитратора. Для достижения равномерной обработки поверхности такого объекта, когда обработку производят на каждой стороне, можно обеспечить перемещение объекта встряхиванием полого тела во время осуществления способа, т.е. во время горения плазмы.

Если предложенный способ используют для нанесения покрытий на объекты в полых телах, они преимущественно могут также впоследствии оставаться в полом теле, которое потом может служить в качестве упаковки (с обработанной внутренней поверхностью). Кроме того, впоследствии можно опорожнять полое тело отсасыванием и таким образом получать вакуумную упаковку. Таким образом, с помощью этого способа можно придать требуемые поверхностные свойства как упакованному объекту, так и вакуумной упаковке, как таковой.

Варианты осуществления изобретения, описанные в настоящем изобретении, приведены со ссылкой на прилагаемые Фиг.1-5, на которых изображены:

Фиг.1. Вариант схемы для осуществления способа по изобретению с двумя плоскими электродами.

Фиг.2. Другой вариант осуществления такого способа с одним стержневидным электродом и одним плоским электродом.

Фиг.3. Схема с двумя стержневидными электродами.

Фиг.4. Другая схема для осуществления способа с электродами, упирающимися в полое тело.

Фиг.5. Пример полого тела, используемого для осуществления способа по изобретению с двумя обрабатываемыми объектами.

На Фиг.1 показана схема, в которой присутствует первый электрод 1, в данном случае, в форме пластины, а также второй электрод 2, также в форме пластины, расположенный параллельно к предыдущему, при этом на втором электроде, в свою очередь, расположен диэлектрик 3. Между первым электродом 1 и вторым электродом 2 можно приложить напряжение переменного тока от 1 кВ до 20 кВ и частотой в интервале от 10 кГц до 60 кГц. В случае осуществления способа с такой схемой для плазменной обработки внутренней поверхности стенки полого тела 4, стенка которого выполнена из полипропилена, данное полое тело 4 сначала заполняют технологическим газом, в данном случае гелием, после этого полое тело 4 герметизируют для обеспечения газонепроницаемости путем сварки. Полое тело 4 в данном случае представляет собой пакет с гибкими стенками с толщиной стенки приблизительно 10 мкм.

Также можно осуществлять соответствующие способы с другими полыми телами, такими, например, как бутыли или канистры.

Полое тело, герметизированное для обеспечения газонепроницаемости, затем вводят в пространство 5 между первым электродом 1 и вторым электродом 2, при этом внешнее давление равно приблизительно 0,1 МПа (1 бар), более точно, атмосферному давлению, преобладая в этом пространстве 5 за пределами полого тела 4. Пространство 5 между электродами 1 и 2 заполнено в данном случае воздухом, который требует более высокой напряженности поля для зажигания, чем гелий, используемый в качестве технологического газа. После ввода полого тела 4 в указанное пространство 5, внутри полого тела 4 создают плазму, из-за более низкой напряженности поля для зажигания технологического газа исключительно внутри полого тела 4, путем приложения напряжения переменного тока между электродами 1 и 2, причем указанная плазма производит модификацию внутренней поверхности стенки полого тела 4.

В качестве материала стенки полого тела 4 можно применять другой диэлектрический материал, например, другой полимерный материал, стекло или керамический материал. В данном случае полое тело 4 имеет наименьший диаметр, соответствующий здесь протяженности в вертикальном направлении, равный приблизительно 7 см. Плазма, полученная при приложении напряжения переменного тока, представляет собой объемную плазму 6, которая здесь заполняет все внутреннее пространство полого тела 4 и проходит, в частности, от одной стенки полого тела 4 до стенки полого тела 4, расположенной напротив. Для зажигания и поддержания этой объемной плазмы 6 в систему подают электроэнергию приблизительно 500 Вт.

В случае вышеописанного варианта осуществления способа более низкой напряженности поля для зажигания внутри полого тела 4 по сравнению с напряженностью поля для зажигания в пространстве 5 за пределами полого тела достигают за счет того, что полое тело 4 заполнено гелием. Для достижения такой же цели в качестве технологического газа можно использовать аргон или другой благородный газ или газовые смеси, содержащие один или более этих благородных газов. Альтернативно или дополнительно пространство 5, которое заполнено воздухом в самом простом варианте осуществления изобретения, может быть заполнено хладагентом, например SF6, за пределами полого тела 4, чтобы обеспечить зажигание плазмы исключительно внутри полого тела 4.

Наконец, предшественник или множество предшественников можно также смешивать с технологическим газом, которым заполняют полое тело 4. Это может происходить, например, когда гелий, служащий в качестве основы для технологического газа, пропускают через соответствующий предшественник перед заполнением полого тела 4 технологическим газом. В качестве предшественников возможно применение, в частности, в качестве предшественников на основе кремния, таких соединений, как ТМОС, ГМДСО, также возможны фторсодержащие предшественники, предшественники, образующие амино-, эпокси-, гидрокси- или группы карбоновой кислоты или моновиниловый эфир диэтиленгликоля. В соответствии с типом используемого предшественника или предшественников обработанная поверхность в полом теле 4 может приобретать уже упоминавшиеся ранее различные типы свойств.

На Фиг.2 показана другая схема для осуществления способа. В данном случае повторяющиеся элементы имеют одинаковое численное обозначение. Различия с ранее описанным способом выражаются только в том, что первый электрод 1, в противоположность второму электроду 2, в данном случае имеет конфигурацию в виде стержня или штыря. В случае такой схемы в пространстве 5 легко можно получать высокие напряженности электрического поля, которые облегчают зажигание плазмы в полом теле 4. Однако объемная плазма 6 в данном случае не полностью заполняет полое тело 4. Тем не менее, чтобы достичь равномерного нанесения покрытия по всей внутренней поверхности стенки полого тела 4, обеспечивают перемещение полого тела 4 во время осуществления способа в направлении, обозначенном двунаправленной стрелкой 7 на Фиг.2. Альтернативно или дополнительно также можно перемещать первый электрод 1 для достижения равномерной обработки поверхности и во избежание его разрушения при высокой температуре. Вместо стержневидного первого электрода 1 можно использовать также множество электродов в форме стержня или штыря.

На Фиг.3 представлена еще одна схема для осуществления способа. На последующих чертежах повторяющиеся элементы имеют одинаковое численное обозначение. В случае способа, представленного на Фиг.3, как первый электрод 1, так и второй электрод 2 имеют конфигурацию в виде штыря или стержня.

Еще один вариант осуществления способа проиллюстрирован на Фиг.4. Различия появляются только в точной конфигурации электродов 1 и 2, которые в данном случае выполнены так, что непосредственно примыкают к наружной поверхности полого тела 4 под прямым углом.

В случае ранее описанных вариантов осуществления предложенный способ служит для модификации, т.е. для нанесения покрытия и/или создания функциональных групп на внутренней поверхности стенки полого тела 4, которое может относится, например, к упаковочному материалу. Модификация описанных способов предусматривает, что перед наполнением полого тела 4 соответствующим технологическим газом в полое тело 4 помещают объект, например, пробку или пластину микротитратора, чтобы использовать способ, прежде всего, для модификации, т.е. для нанесения покрытия и/или создания функциональных групп на наружной поверхности этого объекта.

На Фиг.5 показано соответствующее полое тело 4, в которое введены две пробки в качестве объектов для нанесения покрытия. Покрытие, которое образуется во время плазменной обработки описанного типа путем введения этого полого тела 4 с пробками 8 в поле переменного тока, показано штриховыми линиями. Части наружной поверхности пробок 8, которые упираются во внутреннюю поверхность стенки полого тела 4, сначала остаются чистыми. Для получения равномерного покрытия пробок 8 со всех сторон их можно перемещать во время плазменной обработки, например, при встряхивании полого тела 4, чтобы при этом все стороны пробок 8 подвергались воздействию плазмы. Герметизация полого тела 4 после заполнения технологическим газом также может происходить при закрытии клапана подачи технологического газа. Конечно, вместо пробок 8 можно обрабатывать объекты другого типа и предпочтительно трехмерные, которые в предпочтительном варианте осуществления способа по изобретению должны содержать диэлектрические материалы. Наконец, разработка способа предусматривает, что объекты, обрабатываемые описанным способом, остаются в полом теле 4, которое затем служит в качестве упаковки для обработанных объектов. Для получения вакуумной упаковки после описанного способа технологический газ можно откачать из полого тела 4.

Ниже приведены три подробных примера реализации.

А) Длительная модификация поверхностного натяжения

Путем введения гелия через жидкий предшественник в барботажной системе, пакет или трубку, выполненные из полипропилена, заполняют технологическим газом. В качестве предшественника используют ТМОС для получения гидрофильных слоев и дополнительно добавляют некоторое количество кислорода. Пакеты или трубки, выполненные из полипропилена, обрабатывают при мощности 300 Вт в течение примерно 10 секунд. При этом поверхностное натяжение стенки пакета из полимерного материала или полимерной трубки повышается от 34 мН/м до значения выше 56 мН/м.

Для получения гидрофобных слоев в качестве предшественника в соответствующем способе используют ГМДСО. Пакеты или трубки, выполненные из полипропилена, снова обрабатывают при мощности примерно 300 Вт таким образом, чтобы каждая часть обрабатываемой поверхности подвергалась воздействию плазмы в течение приблизительно 20 секунд. Вследствие этого поверхностная энергия падает с 34 мН/м до значения ниже 18 мН/м.

В) Получение функциональных групп

В медицинский культуральный мешочек вводят гелий и АПТМС. Культуральный мешочек обрабатывают плазмой при значениях мощности свыше 500 Вт в течение приблизительно 20 секунд, при этом плазма заполняет собой весь культуральный мешочек. После открытия мешочка проверяют внутреннюю поверхность мешка с помощью ИК-спектроскопии. Обнаружен инфракрасный спектр с полосами оксида кремния, а также аминогрупп. Теперь к этим группам могут присоединяться, например, биомолекулы.

С) Слои на разных компонентах

Например, пластины микротитратора или пробки из натурального каучука помещают в полиэтиленовый пакет, после чего полиэтиленовый пакет заполняют газовой смесью, содержащей гелий и ГМДСО. Полиэтиленовый пакет затем закрывают и обрабатывают с мощностью 500 Вт таким образом, чтобы плазма горела внутри в течение приблизительно 10 секунд. После чего полиэтиленовый пакет снова заполняют и опять обрабатывают таким же способом. С помощью ИК-спектроскопии обнаружено, что в дополнение к гидрофобным свойствам, поверхностная энергия на внутренней стороне пакета ниже 18 мН/м и везде на пластине микротитратора или пробки можно обнаружить покрытие, полученное с помощью плазмы.

С помощью изобретения, описанного выше, предложен преимущественно простой способ плазменной обработки поверхности в полом теле, который можно осуществлять без высокого потребления технологического газа, при этом способ включает следующие стадии в порядке их перечисления:

- заполнение полого тела, которое имеет одну стенку, выполненную из диэлектрического материала, технологическим газом,

- обеспечение герметичности для полной газонепроницаемости полого тела,

- введение полого тела в пространство между по меньшей мере двумя электродами, причем в указанном пространстве преобладает внешнее давление по меньшей мере 0,05 МПа (0,5 бар), в то время как внутреннее давление также по меньшей мере 0,05 МПа (0,5 бар) преобладает во внутренней камере полого тела, при этом пространство между электродами заполняют газом, для которого требуется более высокая напряженность поля для зажигания в случае внешнего давления, чем для технологического газа в случае внутреннего давления,

- зажигание плазмы внутри полого тела, герметизированного с обеспечением газонепроницаемости, путем приложением достаточно высокого напряжения переменного тока между электродами, при этом во время горения плазмы поток технологического газа не поддерживают.

Последний указанный признак не предусматривает, что в полом теле не может происходить движение технологического газа, но указывает на то, что во время горения плазмы технологический газ не подают и не выпускают из полой камеры.

1. Способ плазменной обработки поверхности внутри полого тела (4), включающий следующие технологические стадии:
- заполнение полого тела (4), имеющего одну стенку, выполненную из диэлектрического материала, технологическим газом;
- обеспечение газонепроницаемости путем герметизации полого тела (4),
- введение полого тела (4), герметизированного для обеспечения газонепроницаемости, в пространство (5) между по меньшей мере двумя электродами (1, 2), причем в этом пространстве (5) за пределами полого тела преобладает внешнее давление по меньшей мере 0,05 МПа (0,5 бар), в то время как во внутренней камере полого тела преобладает внутреннее давление также по меньшей мере 0,05 МПа (0,5 бар), а пространство (5) между электродами (1, 2) заполнено газом, для которого требуется более высокая напряженность поля для зажигания в случае внешнего давления, чем для технологического газа в случае внутреннего давления, причем внешнее давление поддерживают не выше внутреннего давления, и
- зажигание плазмы внутри полого тела (4) путем приложения между электродами (1,2) достаточно высокого напряжения переменного тока.

2. Способ по п.1, в котором плазму получают исключительно внутри полого тела (4).

3. Способ по п.1, в котором внешнее давление и/или внутреннее давление составляет максимально 1 МПа (10 бар), предпочтительно от 0,08 до 0,2 МПа (от 0,8 до 2 бар).

4. Способ по п.3, в котором внешнее давление равно атмосферному давлению.

5. Способ по п.1, в котором внутреннее давление выбирают таким, чтобы оно было равно внешнему давлению или не более чем на 0,1 МПа (1 бар) превышало внешнее давление.

6. Способ по п.1, в котором в качестве полого тела выбирают пакет, бутыль или канистру.

7. Способ по п.1, в котором полое тело (4) имеет толщину стенки от 10 мкм до 5 мм, предпочтительно толщина стенки составляет от 50 мкм до 2 мм.

8. Способ по п.1, в котором полое тело (4) имеет наименьший диаметр по меньшей мере 2 см, предпочтительно по меньшей мере 6 см.

9. Способ по п.1, в котором плазму получают в виде объемной плазмы, которая проходит от одной стенки полого тела (4) до противоположно расположенной стенки полого тела (4).

10. Способ по п.1, в котором напряжение переменного тока имеет амплитуду от 0,1 до 50 кВ, предпочтительно от 1 до 20 кВ.

11. Способ по п.1, в котором для получения плазмы подают мощность от 100 Вт до 5 кВт.

12. Способ по п.1, в котором части поверхности, предназначенной для обработки, приводят в контакт с плазмой в течение от 5 до 300 с.

13. Способ по п.1, в котором электроды (1, 2) представляют собой стержни, или по меньшей мере один стержень и одну пластину или две пластины.

14. Способ по п.1, в котором по меньшей мере один из электродов (1, 2) непосредственно прикладывают к полому телу (4).

15. Способ по любому из пп.1-15, в котором во время горения плазмы перемещают по меньшей мере один из электродов (1, 2).

16. Способ по п.1, в котором технологический газ содержит гелий и/или аргон, и/или другой благородный газ.

17. Способ по п.1, в котором в технологический газ добавляют по меньшей мере один предшественник.

18. Способ по п.17, в котором в технологический газ добавляют по меньшей мере один предшественник, при этом технологический газ пропускают через предшественник до заполнения полого тела (4).

19. Способ по п.1, в котором на поверхность внутренней стенки полого тела (4) последовательно наносят покрытие и/или создают функциональные группы.

20. Способ по п.1, в котором впоследствии обрабатывают внешнюю поверхность объекта, помещенного в полое тело (4) перед герметизацией полого тела (4).

21. Способ по п.20, в котором объект представляет собой пробку (8) или пластину микротитратора.

22. Способ по п.20 или 21, в котором объект перемещают встряхиванием полого тела (4), в то время как его наружную поверхность обрабатывают плазмой.



 

Похожие патенты:
Изобретение относится к композиции, которая полезна для получения покрытия для металлических листовых субстратов металлических банок для хранения и/или транспортировки пищи или напитков или их крышки.

Изобретение относится к технологии машиностроения, в частности к нанесению покрытий из различных термопластичных материалов на внутренние поверхности металлических труб, и может быть использовано при производстве покрытий внутренней поверхности металлических труб для химической, нефтяной, газовой отраслей промышленности.

Изобретение относится к способу нанесения на керамические сотовые элементы покрытия из суспензии, которая содержит в жидком носителе каталитические компоненты в виде твердых веществ и/или в растворенном виде.

Изобретение относится к способу и устройствам для нанесения покрытия на внутреннюю поверхность трубы и может быть использовано при строительстве и ремонте магистральных и технологических трубопроводов в химической, нефтяной, газовой промышленности, а также системах водоснабжения и очистки сточных вод.
Изобретение относится к способам получения алюминидных покрытий и может быть использовано в авиационном и энергетическом турбиностроении. .

Изобретение относится к области получения пленочного потока жидкого вещества. .

Изобретение относится к врезному измерительному прибору, в частности расходомеру, для измерения протекающей в трубопроводе среды, причем врезной измерительный прибор содержит, в частности, магнитно-индуктивный измерительный преобразователь с помещенной в трубопровод, облицованной внутри футеровкой измерительной трубой для ведения измеряемой среды, причем футеровка состоит из полиуретана, полученного с использованием содержащего металлоорганические соединения катализатора.

Изобретение относится к области технологии обработки материалов путем нанесения покрытия в виде мелкодисперсных частиц или молекул на твердые или эластичные изделия.

Изобретение относится к технологии машиностроения, в частности к нанесению полимерных покрытий на внутренние поверхности цилиндрических деталей, и может быть использовано при изготовлении металлополимерных узлов трения машин и технологического оборудования.

Изобретение относится к устройствам для нанесения покрытий на внутреннюю поверхность трубы и может быть использовано при ремонте, изоляции магистральных и технологических трубопроводов в химической, нефтяной и газовой промышленности.

Изобретение относится к процессу нанесения жидких эпоксидных безрастворных композиций на внутренние поверхности труб, предназначенных для строительства трубопроводов различного назначения

Изобретение относится к обработке поверхностей изделий покрытиями, в частности к цементно-песчаной облицовке внутренних поверхностей трубопроводов, и направлено на осуществление заглаживания одновременно с нанесением покрытия при помощи пневматической облицовочной головки

Изобретение относится к машиностроению, а именно к способам нанесения защитных покрытий на внутреннюю поверхность труб, обеспечивающих антикоррозионную изоляцию, защиту от отложений на поверхности труб и снижение гидравлического сопротивления потоку прокачиваемой жидкости, а также к способам контроля качества такого покрытия

Бестраншейный способ нанесения изоляции на внутреннюю поверхность трубопровода, основанный на нанесении на очищенную внутреннюю поверхность участка трубопровода композитного связующего и наложении на него первого защитного слоя, выполненного в виде листов композитного материала, которые устанавливают встык друг к другу с последующей заделкой швов между ними, прогревом и выдержкой в прижатом состоянии к внутренней поверхности участка трубопровода на время полимеризации композитного связующего, отличающийся тем, что на первый защитный слой наносят композитный связующий с последующим нанесением на него второго защитного слоя, выполненного в виде листов композитного материала, которые устанавливают встык с последующей заделкой швов между ними прогревом и выдержкой в прижатом состоянии к первому защитному слою на время полимеризации композитного связующего, нанесенного между первым и вторым защитными слоями, при этом листы композитного материала выполняют по форме внутренней поверхности участка трубопровода с продольным разрезом вдоль продольной оси участка трубопровода, который при их установке ориентируют для первого защитного слоя вдоль одной боковой стороны участка трубопровода, а для второго защитного слоя ориентируют вдоль другой, противоположной ему боковой стороны участка трубопровода, причем при заделке швов между листами композитного материала первого и второго защитных слоев одновременно заделывают и швы, соответствующие продольным разрезам в листах композитного материала, а длины листов композитного материала выполняют одинаковыми кроме листов композитного материала второго защитного слоя, устанавливаемых у краев участка трубопровода, длину которых выбирают равной половине длины листов композитного материала. 1 ил.
Изобретение относится к способу изготовления сенсора для получения спектров гигантского комбинационного рассеяния света (ГКР), который представляет собой стеклянный капилляр, на внутреннюю сторону которого нанесены наночастицы серебра. Наночастицы серебра получаются и прикрепляются к поверхности стекла с помощью реакции восстановления ионов серебра алкиламинами. Стеклянные капилляры промывают моющим раствором для оптики, дистиллированной водой при перемешивании ультразвуком, абсолютным этанолом и сушат на воздухе, помещают в тефлоновый стакан с реакционной смесью 1 ммоль/л AgNO3 и 1 ммоль/л алкиламина в этаноле, реакционную смесь нагревают при 45-50°С в течение 40 мин при интенсивном перемешивании вдоль оси капилляров. После реакции восстановления капилляры промывают этанолом и очищают с внешней стороны. Изобретение позволяет получить сенсор спектров ГКР с высоким разрешением. 1 з.п. ф-лы, 4 пр.

Изобретение относится к способу и устройству для нанесения на монолитную основу с сотовой структурой, содержащую множество каналов, покрытия из жидкости, содержащей компонент катализатора. Способ включает следующие стадии, на которых: поддерживают монолитную основу с сотовой структурой по существу в вертикальном положении; вводят заданный объем жидкости в основу через открытые концы каналов на нижнем конце основы; удерживают герметичным образом введенную жидкость внутри основы; переворачивают основу, содержащую удерживаемую жидкость; и осуществляют приложение вакуума к открытым концам каналов основы на перевернутом, нижнем конце основы, чтобы протянуть жидкость вдоль каналов основы. Изобретение относится также к каталитической монолитной основе фильтра с протеканием через стенки, на впускные каналы которой предварительно нанесен поверхностный мембранный слой, содержащий высокодисперсные огнеупорные твердотельные частицы, в которой выпускные каналы содержат пористое оксидное каталитическое покрытие с по существу равномерным в осевом направлении профилем, данная каталитическая монолитная основа фильтра с протеканием через стенки может быть изготовлена способом по любому из пунктов 1-4. Технический результат заключается в получении каталитического фильтра, имеющего более высокую способность к аккумулированию NH3, что важно для промотирования конверсии NOx при низкой температуре. 3 н. и 15 з.п.ф-лы, 1 табл., 13 ил., 5 пр.

Изобретение относится к элементу канализации и может быть использовано в трубопроводах или фитингах, предназначенных для транспортировки сточных вод и жидких отходов. В элементе канализации внутреннее покрытие представляет собой раствор на полимерных смолах. Раствор на полимерных смолах содержит минеральный наполнитель и органическое связующее. Способ нанесения покрытия на элемент канализации содержит доставку минерального наполнителя и введение органического связующего в наполнитель. Кроме того, обеспечивают смешивание органического связующего и минерального наполнителя и, в случае необходимости, армирующих волокон для получения раствора на полимерных смолах. Техническим результатом изобретения увеличение срока службы и повышение износостойкости внутреннего покрытия элементов канализации. 2 н. и 18 з.п. ф-лы, 9 ил.

Изобретение относится к области нанесения покрытий на внутреннюю поверхность изделий цилиндрической формы и может быть использовано при нанесении защитных материалов на внутреннюю поверхность различных видов цилиндрических изделий, в том числе труб, при котором требуется высокая степень равномерности толщины изолирующей пленки по всей длине изделия, точность при расходе наносимого материала. В способе нанесения покрытия проводят непрерывный контроль температуры наносимого материала. В зависимости от температуры корректируют текущую скорость движения материала покрытия в соответствии с соотношением: где V0 - скорость движения материала, соответствующая эталонному технологическому режиму при температуре Т0; KT - коэффициент зависимости толщины покрытия от изменения температуры материала при фиксированной скорости V0; KV - коэффициент изменения толщины покрытия от изменения скорости при фиксированной температуре материала Т0; TP - реальная текущая температура материала; Т0 - заданная, эталонная для выбранного технологического режима температура материала. Коэффициенты KT и KV определяются из технологической таблицы. Техническим результатом изобретения является улучшение качества покрытия за счет учета влияния температуры материала на толщину и равномерность покрытия по всей длине изделия. 2 ил.

Изобретение относится к системе и способу нанесения покрытия и может быть использовано для нанесения покрытий из жидких сред на керамические или металлические сотовые элементы/фильтры. В системе для полного или частичного покрытия из предназначенной для этого жидкой среды носитель (121) расположен на устройстве (122) для нанесения покрытия. Жидкостепроводящая часть устройства (122) соединена с подъемной трубой (127) через клапан (125), который обеспечивает создание таких же условий давления в подъемной трубе (127). Тем самым обеспечивается такое же повышение в трубе (127) уровня жидкости, что и в носителе. Подъемная труба (127) позволяет контролировать уровень заполнения носителя (121) средой (124) для нанесения покрытия. В способе нанесения покрытия клапан (125) настраивают таким образом, что он обеспечивает создание таких же условий давления в подъемной трубе (127) и повышение в ней уровня жидкости, что и в носителе. На носитель (121) наносят покрытие из предназначенной для этого среды (124). Носитель располагают в положении, в котором его продольная ось ориентирована вертикально. Через по меньшей мере одну из торцевых поверхностей (131, 132) носителя в его каналы (133) вводят среду (124) для нанесения покрытия. По повышению уровня жидкости в подъемной трубе (127) контролируют повышение уровня заполнения носителя средой для нанесения покрытия. По достижении требуемого уровня заполнения носителя средой подавляют дальнейшее повышение ее уровня. Таким образом можно изготавливать систему выпуска отработавших газов, а также применить систему для изготовления носителей с покрытием, используемых для снижения токсичности отработавших газов. Техническим результатом изобретения является упрощение системы для нанесения покрытий на носители, а также упрощение отслеживания уровня среды для нанесения покрытия в носителе вне зависимости от материала, из которого он изготовлен. 4 н. и 11 з.п ф-лы, 11 ил.

Изобретение относится к нанесению покрытия на трубы на месте их эксплуатации и может быть использовано в центробежных аппликаторах смолы с конусом для нанесения покрытия. Аппликатор для нанесения композиции на внутреннюю поверхность трубы на месте ее эксплуатации содержит элемент, изменяющий направление потока, конструкция которого обеспечивает прием композиции и ее выпуск по меньшей мере через один выпуск. Аппликатор содержит также полый конический корпус, имеющий узкий конец, широкий конец и внутреннюю поверхность, сконфигурированную для приема композиции, выпускаемой из элемента, изменяющего направление потока. Конический корпус имеет также множество отверстий, образующих полосу, обворачивающую по охвату конический корпус и ограничивающую на внутренней поверхности трубы область потока композиции на внутренней поверхности трубы, расположенную между упомянутой полосой и узким концом. Полоса содержит первые отверстия, расположенные в непосредственной близости к области потока. Каждое из первых отверстий имеет первый средний диаметр. Полоса также содержит вторые отверстия, расположенные между первыми отверстиями и широким концом. Каждое из вторых отверстий имеет средний диаметр, больший, чем первый диаметр. Область потока не содержит отверстий и имеет первую, вторую, третью и четвертую наклонные стороны. Проксимальные концы первой и второй сторон сходятся в направлении к узкому концу. Проксимальные концы третьей и четвертой сторон сходятся в направлении к узкому концу в виде зеркального отражения проксимальных концов первой и второй сторон. В способе нанесения композиции обеспечивают аппликатор, подают композицию в элемент, изменяющий направление потока. После этого выпускают композицию из по меньшей мере одного выпуска. Композиция собирается на внутренней поверхности полого конического корпуса. Затем вращают полый конический корпус. Собирающаяся на коническом корпусе композиция течет через область потока в сторону множества отверстий и распыляется из полого конического корпуса наружу через по меньшей мере два отверстия из множества отверстий. Устройство для использования в аппликаторе содержит впускной патрубок, протяженный вдоль первой оси и имеющий диаметр и отверстие на проксимальном конце. Устройство также содержит выпускную часть, имеющую второй диаметр. Выпускная часть расположена на дистальном конце впускного патрубка и имеет куполообразный торец, расположенный поперечно к первой оси. Выпускная часть содержит по меньшей мере два выпуска. Каждое из двух выпусков включает расположенную под углом выпускную поверхность. Угол, под которым расположена выпускная поверхность по отношению к первой оси, составляет больше 90°. Техническим результатом группы изобретений является обеспечение более равномерной толщины наносимого покрытия. 3 н. и 12 з.п. ф-лы, 11 ил., 8 табл., 12 пр.
Наверх