Устройство создания газокапельной струи

Изобретение относится к технологии генерации газокапельных струй повышенной дальнобойности и может использоваться в противопожарной технике, в сельском хозяйстве при орошении земель и других отраслях, связанных с необходимостью создания дальнобойных газожидкостных струй. В устройстве для создания газокапельной струи система подачи жидкости осуществляется по двум направлениям, включающим осевую подачу жидкости через подводящий патрубок и, последовательно соединенные и соосные с ним, конфузор и цилиндрическое сопло. Тангенциальная подача жидкости осуществляется через коаксиальный с цилиндрическим соплом корпус в виде цилиндроконической гильзы. На цилиндрической части гильзы закреплена вихревая кольцевая камера с патрубком для подачи жидкости. По краям кольцевой камеры выполнены два ряда подводящих жидкость тангенциальных каналов. В каждом ряду имеется по меньшей мере три тангенциальных канала, соединяющих кольцевую камеру с цилиндрической полостью корпуса. К кольцевой камере соосно прикреплено профилированное сопло, выполненное в виде перфорированной обечайки. Форма обечайки образована поверхностью вращения второго порядка, например гиперболоида, параболоида, эллипсоида. Техническим результатом изобретения является повышение эффективности пожаротушения путем увеличения дальности полета газокапельной струи и ее мелкодисперсности при взаимодействии с объектом. 2 ил.

 

Изобретение относится к технологии генерации газокапельных струй повышенной дальнобойности и может использоваться в противопожарной технике, в сельском хозяйстве при орошении земель и других отраслях, связанных с необходимостью создания дальнобойных газожидкостных струй.

Наиболее близким объектом заявленного устройства является установка для создания газокапельной струи по патенту РФ №21075541, которая содержит систему подачи жидкости и газа и газодинамическое сопло с камерой смешения жидкости и газа.

Недостаток известного устройства заключается в невозможности увеличения с помощью известных средств дальности полета газокапельной струи свыше 50 м, что необходимо, например, для тушения пожаров в многоэтажных зданиях и высотных сооружениях.

Технический результат - повышение эффективности пожаротушения путем увеличения дальности полета газокапельной струи и ее мелкодисперсности при взаимодействии с объектом.

Это достигается тем, что в устройстве для создания газокапельной струи, содержащем системы подачи жидкости и газа и сопло, система подачи жидкости осуществляется по двум направлениям, включающим осевую подачу жидкости через подводящий патрубок и, последовательно соединенные и соосные с ним, конфузор и цилиндрическое сопло, а тангенциальная подача жидкости осуществляется через коаксиальный с цилиндрическим соплом корпус в виде цилиндроконической гильзы, на цилиндрической части которой закреплена вихревая кольцевая камера с патрубком для подачи жидкости, при этом по краям кольцевой камеры выполнены два ряда подводящих жидкость тангенциальных каналов, при этом в каждом ряду имеется, по крайней мере, три тангенциальных канала, соединяющих кольцевую камеру с цилиндрической полостью корпуса, к которой соосно прикреплено профилированное сопло, выполненное в виде перфорированной обечайки, форма которой образована поверхностью вращения второго порядка, например гиперболоида, параболоида, эллипсоида.

На фиг.1 изображена функциональная схема устройства для создания дальнобойной газокапельной струи, на фиг.2 - разрез А-А фиг.1.

Устройство для создания дальнобойной газокапельной струи (фиг.1) содержит систему подачи жидкости по двум направлениям, включающую осевую подачу жидкости через подводящий патрубок 1 и, последовательно соединенные и соосные с ним, конфузор 3 и цилиндрическое сопло 4. Тангенциальная подача жидкости осуществляется через коаксиальный с цилиндрическим соплом 4 корпус 5 в виде цилиндрической гильзы, на цилиндрической части которой закреплена вихревая кольцевая камера 6 с патрубком 7 для подачи жидкости, при этом по краям кольцевой камеры 6 выполнены два ряда 8 и 9 подводящих жидкость тангенциальных каналов (фиг.2), при этом в каждом ряду имеется, по крайней мере, три тангенциальных канала, соединяющих кольцевую камеру 6 с цилиндрической полостью 10 корпуса 5, к которой соосно прикреплено профилированное сопло 11, выполненное в виде перфорированной обечайки, форма которой образована поверхностью вращения второго порядка, например гиперболоида, параболоида, эллипсоида и др., например сопло Лаваля.

Устройство для создания дальнобойной газокапельной струи работает следующим образом.

Устройство перемещается в исходное положение с помощью транспортного средства (не показано) и направляется в сторону объекта, к которому должна осуществляться подача газокапельной струи, посредством управляющего воздействия системы управления перемещением сопла (не показано). Включается турбокомпрессорная установка, являющаяся частью системы подачи газа, и ускоренный воздушный поток из выходного устройства силовой установки направляется в ввод 2 подачи газа в камеру смешения 10, где происходит образование двухфазного потока.

Вихри жидкости впрыскиваются в камеру смешения 10 через размещенные в ней рядами 8 и 9 тангенциальные каналы, которые смешиваются с набегающим воздушным потоком, в результате чего образуется газокапельный поток. Максимальные значения давления воздуха на входе в сопло и относительной концентрации воды в двухфазном потоке выбираются из условия предельно плотной упаковки частиц воды в воздушном потоке: gP=5,7108 Па, где Р - давление газа на входе в сопло; g - относительная концентрация воды в двухфазном потоке. Для достижения необходимой (свыше 50 м) дальности полета газокапельной струи давление газа (воздуха) на входе в сопло должно превышать Р=5,5105 Па;

g=Gввод/Gвоз=4,9,

где Gввод=26 кг/с - массовый расход воды; Gвоз=5,3 кг/с - массовый расход воздуха; Тсм=298 К - температура двухфазного потока; L=1500 мм - длина корпуса 5 цилиндрической гильзы с соплом 11; D=50 мкм - средний диаметр капель воды в воздушном потоке.

Созданный в камере смешения 10 двухфазный поток при указанных выше параметрах разгоняется в профилированном канале сопла 11. Использование кольцевого сопла позволяет компактировать газокапельную струю при относительно однородном распределении капель воды по сечению струи.

Полученные результаты свидетельствуют о том, что двухфазный поток, параметры которого выбираются согласно вышеуказанным условиям, разгоняется в газодинамическом корпусе до скорости, при которой дальность полета газокапельной струи составляет 65 м.

Предложенное изобретение может использоваться в различных отраслях техники, где требуется генерация дальнобойных газокапельных струй, дальность полета которых превышает 50 м. Наиболее эффективно использование изобретения в противопожарной технике, особенно при тушении пожаров в труднодоступных очагах и объектах, и в сельском хозяйстве при орошении земель.

Устройство для создания газокапельной струи, содержащее системы подачи жидкости и газа и сопло, отличающееся тем, что система подачи жидкости осуществляется по двум направлениям, включающим осевую подачу жидкости через подводящий патрубок, и последовательно соединенные и соосные с ним конфузор и цилиндрическое сопло, а тангенциальная подача жидкости осуществляется через коаксиальный с цилиндрическим соплом корпус в виде цилиндро-конической гильзы, на цилиндрической части которой закреплена вихревая кольцевая камера с патрубком для подачи жидкости, при этом по краям кольцевой камеры выполнены два ряда подводящих жидкость тангенциальных каналов, при этом в каждом ряду имеется по меньшей мере три тангенциальных канала, соединяющих кольцевую камеру с цилиндрической полостью корпуса, к которой соосно прикреплено профилированное сопло, выполненное в виде перфорированной обечайки, форма которой образована поверхностью вращения второго порядка, например гиперболоида, параболоида, эллипсоида.



 

Похожие патенты:

Изобретение относится к способу газодинамического напыления порошковых материалов и устройству (варианты) для его реализации и может быть использовано в машиностроении, энергетике, металлургии и других сферах производства.

Изобретение относится к противопожарной технике. .

Изобретение относится к энергетике и предназначено для распыливания жидкостей и суспензий, например водоугольного топлива (ВУТ). .

Форсунка // 2382681

Изобретение относится к технике распыления жидкостей и прочих текучих веществ: растворов, суспензий, порошкообразных материалов, а также сред, содержащих разнородные компоненты или плохо смешиваемые механическим путем жидкости.

Изобретение относится к технике распыливания жидкости и может быть использовано в горелках, работающих на вязких топливах типа мазута и предназначенных для проведения кровельных работ, а также для подогрева битума в битумовозах и автогудронаторах.

Изобретение относится к устройствам для перемешивания, распыления и нанесения полимерных материалов на поверхность, например, оборудования зданий и сооружений и может быть использовано в химической промышленности, в строительстве и т.д.

Изобретение относится к пневматическим распыливающим устройствам и может быть использовано для обеспечения качественного распыливания жидкого топлива, а также для создания рециркуляционных потоков дымовых газов в топках котельных установок при сжигании любого вида топлива.

Изобретение относится к строительству и ремонту автомобильных дорог или теплоагрегатов, в частности к устройствам для распыливания вязких жидкостей типа битумных эмульсий или мазута в топочных устройствах.

Изобретение относится к технике распыления жидкости и может быть использовано в противопожарной технике, в сельском хозяйстве, в устройствах химической технологии и в теплоэнергетике

Изобретение относится к металлургическому производству и может быть использовано для ускоренного охлаждения металла

Изобретение относится к технологии сушки, применяемой в химической, микробиологической и пищевой промышленностях для распиливания жидкостей в распылительных сушилках (суспензий и растворов, а так же молока в молочной промышленности при производстве порошкового молока, в дальнейшем тексте - жидкостей) при помощи распылительной форсунки и газообразного распыливающего агента (сжатого воздуха или перегретого водяного пара, в дальнейшем - газа)

Изобретение относится к статическому распылительному смесителю для смешивания и распыления компонентов. Статический распылительный смеситель для смешивания и распыления по меньшей мере двух текучих компонентов содержит трубчатый корпус (2) смесителя, по меньшей мере один расположенный в корпусе (2) смесителя смесительный элемент (3) для смешивания компонентов, а также распылительную втулку (4). На наружной поверхности корпуса (2) смесителя или во внутренней поверхности распылительной втулки (4) предусмотрено несколько проходящих к дистальному концу канавок (5), которые образуют между распылительной втулкой (4) и корпусом (2) смесителя отдельные проточные каналы (51). Через проточные каналы (51) может проходить распылительная среда от впускного канала (41) распылительной втулки (4) до дистального конца (21) корпуса (2) смесителя. Каждый проточный канал имеет в направлении потока изменяющийся наклон относительно продольной оси. 14 з.п. ф-лы, 15 ил.

Изобретение относится к смесительной детали для статичного распылительного смесителя и может быть использовано для смешивания и распыления по меньшей мере двух текучих компонентов. Соединительная деталь для статичного распылительного смесителя имеет трубчатый кожух (2) смесителя. Кожух (2) имеет по меньшей мере один смесительный элемент и распылительный стакан (4). В стакане (4) кожух (2) смесителя проходит в направлении продольной оси (А) вплоть до дальнего конца (21), который имеет выпускное отверстие (22) для компонентов. Распылительный стакан (4) имеет впускной проход (41) для сжатой распыляющей среды, а также внутреннюю поверхность, имеющую множество отдельных пазов. Пазы могут образовать отдельные каналы вместе с кожухом (2) смесителя. Соединительная деталь имеет впускной участок (11) для взаимодействия с участком дальнего конца (27) кожуха смесителя (2), а также выпускной участок (12) для взаимодействия с распылительным стаканом (4). Впускной участок (11) и выпускной участок (12) имеют угол отклонения (α), отличный от нуля. Выпускной участок (12) имеет на своем конце, удаленном от впускного участка (11), концевую секцию (13). Наружный контур концевой секции (13) является таким же, как и у кожуха (2) смесителя. Концевая секция (13) выпускного участка (12) может взаимодействовать с распылительным стаканом (4) таким же образом, как участок дальнего конца (27) кожуха смесителя (2) может взаимодействовать с распылительным стаканом (4). Распылительный смеситель может сочетаться с соединительной деталью. Техническим результатом изобретения является упрощение обслуживания и обеспечение удобства для широкой области применения при манипулировании. 2 н. и 12 з.п. ф-лы, 6 ил.

Изобретение относится к технике распыления жидкостей. Форсунка содержит корпус, штуцер и соосно расположенную вставку-завихритель с внешней винтообразной нарезкой и расширяющимся коническим отверстием внутри. В штуцере выполнено входное цилиндрическое отверстие, соединенное с диффузором, выполненным осесимметрично в корпусе. В нижней части корпуса расположено осесимметрично корпусу сопло. При этом сопло выполнено с двухступенчатым и соосным вставке-завихрителю диффузором. Первая ступень диффузора является продолжением расширяющегося конического отверстия, выполненного внутри вставки-завихрителя, выполненной из износостойкого материала. Вторая ступень диффузора является продолжением его первой ступени. На ее внутренней конической поверхности выполнена винтообразная нарезка. Коническая поверхность с винтообразной нарезкой второй ступени диффузора выполнена перфорированной. Соосно и осесимметрично корпусу, на диске с отверстиями, закреплена трубка в верхней части штуцера, предназначенная для подвода воздуха в камеру смешения сопла. Камера смешения выполнена с перфорированным днищем и по крайней мере тремя дросселями, расположенными перпендикулярно оси трубки. Обеспечивается повышение качества распыления жидкости, производительности форсунки, уменьшение гидравлических потерь. 1 ил.

Изобретение относится к двухкомпонентному соплу для распыления жидкостно-газовой смеси и способу распыления жидкостно-газовой смеси. Двухкомпонентное сопло для распыления жидкостно-газовой смеси содержит корпус сопла, имеющий по меньшей мере один жидкостный вход, ведущий в смесительную камеру, и по меньшей мере один газовый вход, ведущий в смесительную камеру. Сопло также содержит завихрительную вставку, выходную камеру между завихрительной вставкой и выходным отверстием на нижнем по потоку конце выходной камеры. На нижнем по потоку конце смесительной камеры предусмотрен дроссель. Между дросселем и завихрительной вставкой предусмотрена промежуточная камера. В способе распыления жидкостно-газовой смеси с использованием двухкомпонентного сопла жидкостно-газовую смесь образуют в смесительной камере, приводят во вращение вокруг центральной продольной оси посредством завихрительной вставки и выводят наружу через выходное отверстие. Затем направляют жидкостно-газовую смесь через дроссель на нижней по потоку оконечности смесительной камеры. После этого направляют жидкостно-газовую смесь через промежуточную камеру между дросселем и завихрительной вставкой. Техническим результатом группы изобретений является обеспечение возможности регулирования требуемого водного распределения посредством регулирования давления воды и/или воздуха при постоянном угле раскрытия струи. Таким образом, длинномерные продукты в установке непрерывной разливки могут быть подвергнуты различным режимам охлаждения путем изменения давления воды и/или воздуха двухкомпонентного сопла. 2 н. и 17 з.п. ф-лы, 23 ил.

Изобретение относится к технике распыления жидкости и может быть использовано в противопожарной технике, в сельском хозяйстве, в устройствах химической технологии и в теплоэнергетике. В пневматической форсунке для распыливания жидкостей к центральному сердечнику, жестко связанному с верхней цилиндрической ступенью двухступенчатой втулки сопла, соосно прикреплен внешний сплошной диффузор таким образом, чтобы не было перекрыто выходное сечение кольцевого зазора, соединенного по крайней мере с тремя радиальными каналами, выполненными в двухступенчатой втулке сопла. Техническим результатом изобретения является повышение эффективности мелкодисперсного распыливания жидкости. 1 ил.

Изобретение относится к средствам распыливания жидкостей и растворов и может быть использовано в двигателестроении, химической и пищевой отраслях промышленности. В пневматической вихревой форсунке в корпусе осесимметрично штуцеру и шнеку расположена трубка для подвода воздуха. К нижней части трубки, расположенной в шнеке, прикреплены дросселирующие каналы. Срез каналов расположен на гладкой поверхности шнека напротив выхода винтовой канавки, расположенной внутри корпуса. Техническим результатом изобретения является повышение эффективности распыления жидкости. 2 з.п. ф-лы, 1 ил.

Изобретение относится к средствам распыливания жидкостей и растворов и может применяться в двигателестроении, химической и пищевой промышленности. В вихревой пневматической форсунке соосно и осесимметрично корпусу посредством перфорированной шайбы к внутренней поверхности штуцера с цилиндрическим отверстием закреплена трубка для подвода воздуха в диффузор. На конце трубки установлены по крайней мере три дроссельные трубки. Техническим результатом изобретения является повышение эффективности распыления жидкости. 1 з.п. ф-лы, 1 ил.
Наверх