Способ ультразвуковой очистки деталей

Изобретение относится к ультразвуковой очистке деталей в водных растворах моющих средств, конкретно к очистке деталей и узлов оборудования для добычи, транспортировки и переработки нефти и газа от асфальто-смолисто-царафино-солевых отложений. Способ включает промывку деталей в трех ваннах ультразвукового технологического комплекса: в первой ванне - в водном растворе щелочного моющего средства, концентрацией 100-150 г/л, температурой раствора 80-90°С с наложением ультразвука, во второй ванне - в воде с использованием барботажа сжатым воздухом, в третьей ванне - в водном растворе кислотного технического моющего средства «МУК-К», концентрацией 100-150 г/л, температурой 20-70°С с наложением ультразвука, с последующей промывкой деталей во второй ванне. Изобретение обеспечивает экологическую безопасность технологического процесса, снижение его себестоимости и трудоемкости, повышение производительности труда и качества очистки деталей. 1 ил.

 

Изобретение относится к ультразвуковой очистке деталей в водных растворах моющих средств, конкретно к очистке деталей и узлов оборудования для добычи, транспортировки и переработки нефти и газа от асфальто-смолисто-парафино-солевых отложений.

Образующийся в процессе эксплуатации оборудования слой отложений на поверхности деталей неоднороден по своему составу. Он представляет собой кристаллическую микропористую массу, состоящую из солей, парафинов и компонентов нефти. Содержание твердых углеводородов в нем составляет 50-65%. Основными типами солевых отложений являются сульфаты и карбонаты кальция, сульфаты бария. Органические компоненты нефти - асфальтены, смолы, спирты, нефтяные кислоты, их соли, галлоидные и сероорганические соединения. Состав, структура и толщина слоя отложений в значительной степени обусловливаются физико-химическими, механическими свойствами и микрорельефом поверхностей оборудования.

При очистке деталей нефтегазового оборудования от асфальто-смолисто-парафино-солевых отложений детали подвергают предварительной очистке щелочными моющими растворами. Затем применяют химический способ - травление в концентрированных растворах кислот. Применяют также способ отжига в электрических печах и механические способы - ручную и пескоструйную обработку деталей (Борьба с солеотложениями - удаление и предотвращение их образования. Schlumberger. Нефтегазовое обозрение. Осень 2002 - том 7, номер 2).

При струйной очистке деталей с использованием водных растворов щелочных моющих средств от нефтяных продуктов загрязнений очищаются только наружные поверхности деталей. Химический способ создает экологические проблемы. Кроме того, при травлении происходит изменение структуры поверхностного слоя материала обрабатываемых деталей, что снижает их ресурс. Термические способы очень энергоемки. Механическая очистка приводит к изменению размеров деталей, снижению класса шероховатости обработанных поверхностей, что отрицательно влияет на производительность и срок службы оборудования.

Применение ультразвука позволяет осуществить качественную очистку деталей от сложных отложений. Ультразвук способен проникать в скрытые полости через жидкую рабочую среду и очищать их от загрязнений. Применение ультразвуковых установок позволяет очистить детали сложной конфигурации, имеющие микроскопические полости и каналы. При этом можно использовать экологически безопасные рабочие жидкости, которые хорошо растворяют соответствующие загрязнения, а также обладают физико-химическими параметрами, обуславливающими достижение наибольшей интенсивности ударных волн.

Технический результат, получаемый от изобретения, - очистка деталей оборудования от эксплуатационных отложений, состоящих из солей, парафинов и компонентов нефти.

Для достижения технического результата предлагаемый способ включает промывку деталей в трех ваннах ультразвукового технологического комплекса (чертеж). Здесь: 1, 5 - ультразвуковая установка; 2, 4 - емкость для хранения моющего раствора; 3 - вспомогательная емкость для промывки деталей водой; 6, 7 - насосы для перекачивания моющих растворов; 8 - установка для утилизации отходов.

Для достижения технического результата рабочую емкость ультразвуковой установки 1 наполняют водой до необходимого уровня, добавляют щелочное моющее средство в соотношении 50-100 грамм моющего средства на 1 литр воды, нагревают полученный раствор до температуры 70-80°С. Детали, при необходимости предварительно очищенные щелочными моющими растворами в струйных или иных моющих машинах, помещают в рабочую емкость и подвергают воздействию ультразвука интенсивностью 15-20 Вт на литр моющего раствора в течение 30-180 минут, в зависимости от состава, структуры и толщины слоя отложений. В процессе ультразвуковой обработки моющий раствор нагревается примерно на 10°С за 1 час работы за счет тепловой энергии, выделяемой в процессе кавитации моющего раствора, тем самым компенсируя потерю моющих свойств раствора. В процессе ультразвуковой обработки в щелочном растворе происходит вымывание и растворение углеводородов и органических компонентов нефти из кристаллической микропористой массы солевых отложений на поверхности деталей.

После ультразвуковой обработки в щелочном моющем растворе детали помещают во вспомогательную емкость 3 и промывают водой. В процессе промывки происходит нейтрализация и замещение водой щелочного моющего раствора в порах солевых отложений. Одновременное барботирование воды воздухом давлением 0,02-0,1 МПа обеспечивает удаление частиц солевых отложений, отслоившихся в результате кавитационного разрушения поверхностного слоя отложений.

После промежуточной промывки детали помещают в рабочую емкость ультразвуковой установки 5. Кислотный моющий раствор, составленный из технического моющего средства «МУК-К» и воды в пропорции 50-150 грамм средства на 1 литр воды, нагревают до температуры 20-40°С. Очищаемые детали подвергают воздействию ультразвука интенсивностью 15-20 Вт на 1 литр моющего раствора в течение от 30 минут до 4 часов, в зависимости от толщины и состава слоя солевых отложений. В процессе ультразвуковой обработки в кислотном моющем растворе происходит кавитационное разрушение и растворение солевых отложений. В процессе ультразвуковой обработки моющий раствор нагревается примерно на 10°С за 1 час работы за счет тепловой энергии, выделяемой в процессе кавитации моющего раствора, тем самым компенсируя потерю моющих свойств раствора.

Далее детали помещают во вспомогательную емкость 3 и промывают водой. В процессе промывки происходит нейтрализация моющего раствора. Одновременное барботирование воды воздухом давлением 0,02-0,1 МПа обеспечивает удаление остатков солевых отложений с поверхности очищаемых деталей.

Использование в составе технологического комплекса емкостей 2 и 4 обеспечивает возможность многократного использования моющих растворов. Промывка деталей после ультразвуковой обработки в щелочном и кислотном растворах в одной вспомогательной емкости 3 обеспечивает нейтрализацию моющих растворов перед их обработкой в установке для утилизации отходов 8.

Заявленные пределы температуры нагрева до 70-80°С для щелочного моющего раствора и до 20-40°С - для кислотного, заявленное соотношение моющего средства и воды 50-100 грамм на литр для щелочного раствора и 50-150 грамм на литр для кислотного раствора, а также интенсивность ультразвукового воздействия и время обработки деталей ультразвуком основаны на экспериментальных данных.

Пример 1. Очистка фильтроэлементов щелевых фильтров ЖНШ. Оборудование - ультразвуковая установка «УЗС100-15». Объем рабочей емкости - 100 литров. Мощность ультразвука 1500 Вт. Моющие средства: - щелочное - «СКАТ-Д», кислотное - «МУК-К». Ультразвуковая очистка производилась без предварительной очистки. Одновременно очищалось шесть фильтроэлементов в следующей последовательности:

1.1. Ультразвуковая очистка в щелочном растворе

Моющее средство - 10% раствор ТМС «СКАТ-Д». Начальная температура раствора - 20°С. Нагрев электронагревателем до 80°С. Продолжительность очистки - 30 минут. Конечная температура раствора - 85°С.

1.2. Промывка фильтроэлементов в рабочей емкости ультразвуковой установки водой без применения ультразвука в течение 5 минут.

1.3. Ультразвуковая очистка в кислотном растворе

Моющий раствор - 10% раствор кислотного технического моющего средства «МУК-К». Начальная температура моющего раствора - 26°С. Продолжительность очистки - 60 минут. Конечная температура раствора +44°С.

1.4. Промывка фильтроэлементов в рабочей емкости ультразвуковой установки водой без применения ультразвука в течение 10 минут.

Контроль качества очистки проводился с использованием приспособления для внутренней подсветки фильтроэлемента. Результат - 100%.

Пример 2. Очистка рабочих колес и направляющих аппаратов погружного насоса УЭЦН 5А. Оборудование - ультразвуковая установка «УЗС130-24». Рабочий объем 130 литров, мощность ультразвука 2400 Вт. Моющие средства: - щелочное - «СКАТ-Б», кислотное - «МУК-К». Детали после разборки насоса предварительно промывались в струйной моечной машине карусельного типа 20% водным раствором щелочного моющего средства «ПАН». Температура нагрева - 80°С. Время очистки - 30 минут. Одновременно очищался комплект рабочих органов одной секции насоса из 244 рабочих колес и 244 направляющих аппаратов в следующей последовательности:

2.1. Ультразвуковая очистка деталей в щелочном растворе

Моющее средство - 10% раствор ТМС «СКАТ-Б». Начальная температура раствора - 16°С. Нагрев электронагревателем до 75°С. Детали помещались в рабочую емкость в корзине навалом. Продолжительность очистки - 90 минут. Конечная температура раствора - 88°С.

2.2. Промывка деталей в рабочей емкости ультразвуковой установки водопроводной водой с использованием барботажа раствора сжатым воздухом давлением 0,06 МПа без применения ультразвука в течение 10 минут.

2.3. Ультразвуковая очистка деталей в кислотном растворе

Моющий раствор - 15% раствор кислотного технического моющего средства «МУК-К». Начальная температура моющего раствора - 26°С. Раствор нагрели электронагревателем до температуры 40°С. Продолжительность ультразвуковой очистки - 180 минут. Конечная температура раствора +61°С.

2.4. Промывка деталей в рабочей емкости ультразвуковой установки водой с барботированием воды сжатым воздухом давлением 0,08 МПа без применения ультразвука в течение 10 минут.

Контроль качества очистки деталей проводился с использованием приспособления для проливки деталей сольвентом под давлением 0,005 МПа по равномерности истечения проливочной жидкости из проходных полостей. Результат: полностью очищено 97,54% направляющих аппаратов и 98,77% рабочих колес.

Предлагаемый способ обеспечивает повышение качества очистки деталей, экологическую безопасность, многократное использование моющих растворов, снижение себестоимости и трудоемкости процесса очистки.

Способ ультразвуковой очистки деталей от асфальто-смолисто-парафино-солевых отложений, заключающийся в промывке деталей в трех ваннах ультразвукового технологического комплекса: в первой ванне - в водном растворе щелочного моющего средства, концентрацией 100-150 г/л, температурой раствора 80-90°С с наложением ультразвука, во второй ванне - в воде с использованием барботажа сжатым воздухом, в третьей ванне - в водном растворе кислотного технического моющего средства «МУК-К», концентрацией 100-150 г/л, температурой 20-70°С с наложением ультразвука, с последующей промывкой деталей во второй ванне.



 

Похожие патенты:

Изобретение относится к области эффективного удаления окалины, образующейся в процессе производства стального листа. .

Изобретение относится к способам очистки проволоки от технологических загрязнений смазочных материалов в водных растворах моющих средств и касается способа очистки проволоки и устройства для его осуществления.

Изобретение относится к способу очистки поверхностей в заданном диапазоне ультразвуковых колебаний путем распространения непрерывного вихревого потока очищающей жидкости, которым отрывают частицы загрязнений и обеспечивают повышение качества очищаемой поверхности.

Изобретение относится к устройствам для очистки деталей подшипников качения в водных моющих растворах посредством сонохимического и эрозионного действия ультразвуковой кавитации в упругих волнах, которые распространяются в растворе источниками колебаний, имеющими плоские излучающие поверхности, а также к способам переналадки этих устройств при замене типоразмера очищаемой детали.

Изобретение относится к системам очистки длинномерных изделий от поверхностных загрязнений, солевых отложений, в частности элементов тепловыделяющих систем атомных станций.

Изобретение относится к области ультразвуковой обработки и может применяться для очистки изделий от технологических и эксплуатационных загрязнений. .
Изобретение относится к устройствам для ультразвуковой очистки малогабаритных преимущественно металлических изделий от различного вида загрязнений. .
Изобретение относится к способам очистки металлических изделий от технологических загрязнений, образующихся на их поверхности в процессе изготовления, и эксплуатационных загрязнений, возникающих при использовании по назначению и хранении.

Изобретение относится к очистке деталей от загрязнений в акустическом поле ультразвуковой частоты, в частности трубок блоков ТВС на атомных станциях, и обеспечивает повышение эффективности очистки.

Изобретение относится к производству изделий электронной техники и может быть использовано для двухсторонней обработки стеклянных подложек квадратной или прямоугольной формы, используемых, например, в производстве при изготовлении фотошаблонов, а также жидкокристаллических экранов (ЖКЭ).

Изобретение относится к установкам для очистки дисперсных материалов от загрязнений в потоке жидкой среды

Изобретение относится к области кавитационной обработки жидких сред, удельное содержание воды или иной жидкой фазы которых превышает 65-70% от общей массы, а также к обработке предметов, находящихся в этой среде

Изобретение относится к области устранения скоплений жидкости или газа из проблемных участков газонефтепроводов

Изобретение относится к ультразвуковой технике и может быть использовано при производстве оборудования для ультразвуковой очистки изделий в жидкой среде

Изобретение относится к устройствам для ультразвуковой обработки изделий в жидкой среде и может быть использовано в атомной энергетике для очистки тепловыделяющих сборок атомных реакторов, а также в машиностроении, электронной, химической, фармацевтической и других отраслях промышленности, связанных с очисткой изделий, травлением, экстракцией и другими видами ультразвукового технологического воздействия

Изобретение относится к устройствам для очистки дисперсных материалов от загрязнений в потоках жидкой среды, в том числе от радиоактивных загрязнений. Установка для ультразвуковой обработки дисперсного материала в жидкой среде содержит цилиндрический корпус, на внешней стороне которого расположены ультразвуковые излучатели, а в полости цилиндрического корпуса имеются насадки с перфорациями, каждая насадка выполнена в виде шнека, укрепленного на центральном стержне или к стенке корпуса. В корпусе расположены патрубки для ввода реагентов, секция с входным патрубком для подачи обрабатываемого материала и выходными патрубками для выхода шлама, а также коническая часть со сливным патрубком и патрубками для ввода реагентов. Стержень выполнен полым, и в полости стержня имеются ультразвуковые излучатели с волноводами радиального излучения. Насадки имеют определенные размеры перфораций. Нижние насадки имеют более крупные перфорации в сравнении с верхними насадками. Стержень одним из своих концов прикреплен к вибратору или приводу вращательного движения. Технический результат - повышение эффективности процесса очистки дисперсного материала. 6 з.п. ф-лы, 3 ил.

Изобретение относится к способам ультразвуковой очистки кристаллов и может быть использовано для очистки кристаллов сапфира от технологических загрязнений. Сущность: осколки кристаллов поочередно промывают в трех установках ультразвукового технологического комплекса. Причем в первой установке осколки кристаллов промывают в водном растворе моющего средства с наложением движущегося ультразвукового поля, после чего барботируют моющий раствор воздухом. Во второй установке промывку осуществляют в чистой воде с наложением движущегося ультразвукового поля. В третьей установке осколки кристаллов промывают в деионизированной воде с наложением движущегося ультразвукового поля. Технический результат: повышение эффективности и экологичности очистки искусственных кристаллов, снижение трудоемкости процесса очистки. 2 ил.

Изобретение относится к области машиностроения, в частности к способам удаления загрязнений с поверхностей и из полостей разнообразных изделий. Предложен способ очистки изделий легколетучими растворителями, проводимый в замкнутом объеме при рабочем давлении, включающий очистку и ультразвуковую обработку, причем ультразвуковую моечную ванну 1 с изделием 2 помещают в герметичную камеру 4, из которой удаляют атмосферный воздух. Ванну 1 заполняют растворителем, проводят очистку, после чего растворитель сливают, пары рекуперируют, напускают в камеру атмосферный воздух и извлекают изделие из ванны 1. Способ можно вести в условиях, при которых температуру растворителя поддерживают ниже температуры корпуса герметичной камеры, а рабочее давление создают подачей сухого очищенного газа в герметичную камеру 4. Интенсивность способа можно увеличить созданием движения жидкости прокачкой растворителя через ванну, а также покачиванием ванны в процессе удаления загрязнений. Способ позволяет снизить пожарную опасность в случае применения легковоспламеняющихся растворителей, повысить эффективности способа ультразвуковой очистки.4 з.п. ф-лы, 1 ил.

Аппарат для чистки промышленных компонентов содержит контейнер для жидкости, которым ограничено огражденное пространство для содержания в нем чистящей жидкости, и ультразвуковые преобразователи, обладающие рабочей частотой и длиной волны в чистящей жидкости, прикрепленные, по меньшей мере, к части контейнера для жидкости на расстоянии друг от друга в диапазоне от 2 длин волн до 10 длин волн. Во время работы преобразователи генерируют большую плотность мощности в области размещения компонента в контейнере для жидкости, чем средняя плотность мощности контейнера для жидкости. Преобразователи работают таким образом, что частотой и фазой смежных преобразователей не управляют одновременно, чем предотвращают образование статических и вредоносных стоячих волн в чистящей жидкости. 2 н. и 39 з.п. ф-лы, 10 ил.
Наверх