Теплоаккумулирующий материал теплового аккумулятора для поддержания пусковой температуры двс строительной машины

Изобретение относится к области машиностроения, а более конкретно к составам теплоаккумулирующих материалов, используемых в тепловых аккумуляторах. Тепловые аккумуляторы используются для предпускового подогрева энергосистем строительной машины в период межсменной стоянки в зимний период. Теплоаккумулирующий материал содержит на 100 грамм перенасыщенного раствора ацетата натрия трехводного 2-3 грамма пищевого желатина, 2-3 грамма хлорида натрия, 1-2 грамма гидрооксида натрия. Технический результат: улучшение эксплуатационных характеристик теплоаккумулирующего материала, таких как температура реакции, температура самокристаллизации и температура фазового перехода. 3 ил.

 

Изобретение относится к области машиностроения, а более конкретно к составам теплоаккумулирующих материалов, используемых в тепловых аккумуляторах в период межсменной стоянки строительной машины в зимний период.

Тепловые аккумуляторы используются для предпускового подогрева двигателя внутреннего сгорания (ДВС) строительной машины в период межсменной стоянки в зимний период. Утилизация вторичного тепла в тепловые аккумуляторы с применением в качестве теплоаккумулирующей среды материалов с фазовым переходом является наиболее актуальным техническим решением, так как эти материалы обладают достаточно высоким коэффициентом полезного действия, позволяющим хранить тепло достаточно долго, особенно при использовании явления переохлаждения жидкой фазы с последующим инициированием фазового перехода в минимально короткое время, а также отличаются простотой зарядки теплового аккумулятора.

Известен состав на основе перенасыщенного раствора ацетата натрия трехводного с добавлением пищевого желатина и глицерина (пат. №2149608, кл. A61F 7/03, 1999), который используется в качестве теплоносителя в солевых грелках.

Используемый в качестве теплоносителя пересыщенный водный раствор ацетата натрия в солевых грелках обладает следующими недостатками.

Температура реакции - это температура теплоаккумулирующего материала в результате самокристаллизации, составляет 40°C. Температура самокристаллизации материала - это температура, при которой начинается реакция выделения тепла, составляет -9°C.

Температура фазового перехода - это температура, при которой теплоаккумулирующий материал переходит из твердого агрегатного состояния в жидкое состояние, составляет 90°C.

Все эти показатели не удовлетворяют требованиям теплоаккумулирующего материала, используемого в тепловом аккумуляторе.

Технической задачей предлагаемого изобретения является разработка состава теплоаккумулирующего материала, соответствующего всем необходимым требованиям для использования его в качестве теплоносителя в тепловом аккумуляторе.

При осуществлении технического решения поставленная задача решается за счет достижения технического результата, который заключается в улучшении эксплуатационных характеристик теплоаккумулирующего материала, таких как температура реакции, температура самокристаллизации и температура фазового перехода.

Для достижения указанного технического результата предложен теплоаккумулирующий материал для использования его в качестве теплоносителя в тепловом аккумуляторе, включающий пищевой желатин, хлорид натрия, гидрооксид натрия, при следующих соотношениях компонентов на 100 грамм перенасыщенного раствора ацетата натрия трехводного:

Пищевой желатин (C102H151O39N31) 2-3 грамм
Хлорид натрия (NaCl) 2-3 грамм
Гидрооксид натрия (NaOH) 1-2 грамм

Предлагаемый состав отличается от известного тем, что при уменьшении концентрации желатина с 5 грамм до 2-3 грамм в 100 граммах перенасыщенного раствора ацетата натрия трехводного, добавлении хлорида натрия 2-3 грамма и гидрооксида натрия 1-2 грамма удалось достичь температуры реакции 50°C, температуры самокристаллизации -5°C и температуры фазового перехода 76°C. Данные характеристики являются основополагающими для теплоаккумулирующего материала при использовании его в качестве теплоносителя в тепловом аккумуляторе.

Температура реакции теплоаккумулирующего материала в результате самокристаллизации первоначально составляла 40°C, при добавлении пищевого желатина, хлорида натрия и гидрооксида натрия ее удалось увеличить до 50°C. Температура реакции должна быть максимально высокой, так как чем выше температура реакции, тем больше количество теплоты, переданное тепловым аккумулятором объекту нагрева. В результате добавления пищевого желатина, хлорида натрия и гидрооксида натрия удалось увеличить температуру реакции на 10°C.

Температура самокристаллизации теплоаккумулирующего материала, при которой начинается реакция выделения тепла, первоначально составляла -9°C, ее удалось уменьшить до -5°C. Температура самокристаллизации теплоаккумулирующего материала должна быть в пределах -5°C, так как при этом температурном пределе существует возможность получить максимальный тепловой поток от теплового аккумулятора к объекту нагрева. В результате добавления пищевого желатина, хлорида натрия и гидрооксида натрия удалось увеличить температуру самокристаллизации теплоаккумулирующего материала на 4°C.

Температура фазового перехода теплоаккумулирующего материала, при которой теплоаккумулирующий материал переходит из твердого агрегатного состояния в жидкое состояние, первоначально составляла 90°C, ее удалось уменьшить до 76°C. Температура фазового перехода теплоаккумулирующего материала должна быть как можно меньше, так как чем меньше температура фазового перехода, тем меньше времени требуется на зарядку теплового аккумулятора, что является важной характеристикой. В результате добавления пищевого желатина, хлорида натрия и гидрооксида натрия удалось уменьшить температуру фазового перехода теплоаккумулирующего материала на 14°C.

Соотношения компонентов в теплоаккумулирующем материале были получены в результате экспериментов, которые определили пределы компонентов в теплоаккумулирующем материале с учетом влияния каждого компонента на итоговые свойства теплоаккумулирующего материала.

Эксперименты проводились в камере холода при температуре -30°C. В перенасыщенный раствор ацетата натрия трехводного последовательно добавлялись компоненты и далее этот раствор помещался в камеру холода, где по средствам датчиков снимались показатели температуры и времени. Если состав не удовлетворял необходимым требованиям, то изменялась масса компонента и заново повторялась процедура снятия температурных характеристик теплоаккумулирующего материала.

В качестве компонентов использовался пищевой желатин в виде гранул по ГОСТ-11293-89, хлорид натрия в виде бесцветных кристаллов по ГОСТ 13830-97 и гидрооксид натрия в виде бесцветных кристаллов по ГОСТ 2263-79.

Первый исследуемый компонент, который добавлялся в теплоаккумулирующий материал. Благодаря добавлению пищевого желатина возможно повышение температуры прохождения реакции самокристаллизации теплоаккумулирующего материала.

Результаты проведенных экспериментов представлены на фиг.1, где представлен график температур теплоаккумулирующего материала с добавлением пищевого желатина, на фиг.2, где представлен график температур теплоаккумулирующего материала с добавлением хлорида натрия, на фиг.3, где представлен график температур теплоаккумулирующего материала с добавлением гидрооксида натрия.

На фиг.1 изображена температура реакции теплоаккумулирующего материала - это температура в результате самокристаллизации. Максимальная температура самокристаллизации теплоаккумулирующего материала, которая достигается. При оптимальной концентрации пищевого желатина температура реакции теплоаккумулирующего материала составляет 54°C.

Температура самокристаллизации теплоаккумулирующего материала - это температура, при которой начинается реакция выделения тепла. При оптимальной концентрации пищевого желатина температура самокристаллизации теплоаккумулирующего материала составляет 0°C.

Температура фазового перехода теплоаккумулирующего материала - это температура, при которой теплоаккумулирующий материал переходит из твердого агрегатного состояния в жидкое состояние. При оптимальной концентрации пищевого желатина температура фазового перехода теплоаккумулирующего материала составляет 80°C.

В результате проведения эксперимента было выявлено содержание пищевого желатина в теплоаккумулирующем материале, оно составило 2-3 грамма в 100 граммах раствора ацетата натрия трехводного.

Однако полученные результаты не соответствуют требованиям теплоаккумулирующего материала, поэтому необходимо проведение второго эксперимента.

Второй компонент подбирался с целью уменьшение температуры начала реакции теплоаккумулирующего материала до -5°C. Хлорид натрия добавлялся к уже подобранному раствору ацетата натрия трехводного с пищевым желатином.

Результаты эксперимента представлены на фиг.2, где изображены температура реакции, температура самокристаллизации и температура фазового перехода при добавлении хлорида натрия.

Из графика видно, что при добавлении хлорида натрия идет снижение температуры начала реакции теплоаккумулирующего материала, но также снижаются и температура реакции теплоаккумулирующего материала и температура перехода теплоаккумулирующего материала из твердого агрегатного состояния в жидкое агрегатное состояние. Поэтому выбор соотношения концентрации хлорида натрия должен основываться на оптимальном варианте без существенной потери в показаниях температуры реакции теплоаккумулирующего материала, температуры фазового перехода теплоаккумулирующего материала.

При оптимальной концентрации хлорида натрия температура реакции теплоаккумулирующего материала равна 48°C, температура самокристаллизации теплоаккумулирующего материала равна -4°C, температура фазового перехода теплоаккумулирующего материала равна 79°C. По результатам эксперимента видно, что температура самокристаллизации теплоаккумулирующего материала составила -4°C.

В результате проведения эксперимента было выявлено содержание хлорида натрия в теплоаккумулирующем материале, оно составило 2-3 грамма в 100 граммах раствора ацетата натрия трехводного.

Для понижения температуры самокристаллизации теплоаккумулирующего материала до -5°C необходимо добавление третьего компонента - гидрооксида натрия.

Третий компонент добавлялся с целью уменьшения температуры начала реакции теплоаккумулирующего материала до -5°C и увеличения температуры реакции теплоаккумулирующего материала. Гидрооксид натрия добавлялся к уже подобранному раствору ацетата натрия трехводного с пищевым желатином и хлоридом натрия.

Результаты эксперимента представлены на фиг.3, где изображены температура реакции, температура самокристаллизации и температура фазового перехода при добавлении гидрооксида натрия.

Благодаря использованию гидрооксида натрия удалось достичь температуры самокристаллизации теплоаккумулирующего материала -5°C и увеличить температуру реакции теплоаккумулирующего материала до 50°C, а температуру фазового перехода теплоаккумулирующего материала снизить до 76°C.

В результате проведения эксперимента было выявлено содержание гидрооксида натрия в теплоаккумулирующем материале, оно составило 2-3 грамма в 100 граммах раствора ацетата натрия трехводного.

Теплоаккумулирующий материал используется в качестве теплоносителя в тепловых аккумуляторах для предпусковой подготовки ДВС после межсменной стоянки в зимний период.

Тепловой аккумулятор имеет различные конструкции, например отдельный металлические емкости, заполненные теплоаккумулирующим материалом. Основной принцип, заложенный в их работе, заключается в накоплении теплоаккумулирующим материалом в процессе работы строительной машины тепловой энергии и дальнейшей ее передачи в процессе межсменной стоянки. Процесс накопления тепловой энергии теплоаккумулирующим материалом заключается в переходе теплоаккумулирующего материала из твердого агрегатного состояния в жидкое агрегатное состояния. Далее после остановки двигателя происходит постепенное остывание теплоаккумулирующего материала, что в результате приводит к реакции самокристаллизации теплоаккумулирующего материала. Реакция самокристаллизации теплоаккумулирующего материала сопровождается выделением тепла, которое применяется для поддержания пусковой температуры ДВС.

Теплоаккумулирующий материал, предназначенный для использования в качестве теплоносителя в тепловом аккумуляторе для поддержания пусковой температуры в период межсменной стоянки строительной машины в зимний период, включающий перенасыщенный трехводный раствор ацетата натрия с пищевым желатином, отличающийся тем, что теплоаккумулирующий материал дополнительно содержит хлорид натрия и гидрооксид натрия при следующем соотношении компонентов на 100 грамм перенасыщенного раствора ацетата натрия трехводного:

Пищевой желатин (C102H151O39N31) 2-3 грамм
Хлорид натрия (NaCl) 2-3 грамм
Гидрооксид натрия (NaOH) 1-2 грамм


 

Похожие патенты:

Изобретение относится к двигателям внутреннего сгорания, в частности к их средствам запуска с подогревом текучей среды в системе охлаждения двигателя внутреннего сгорания тепловозов, других транспортных машин и передвижных дизель-электростанций.

Изобретение относится к области двигателестроения, в особенности к предпусковому прогреву двигателей внутреннего сгорания, и может быть использовано на транспортных средствах в условия низких температур.

Изобретение относится к средствам предпускового разогрева двигателей внутреннего сгорания, в частности, с воздушным охлаждением. .

Изобретение относится к двигателестроению, а именно к способам запуска двигателя внутреннего сгорания, и предназначено для облегчения запуска двигателя при отрицательных температурах окружающей среды.

Изобретение относится к системам нагрева двигателя, системам отопления транспортных средств, работающих на топливе, системам конвертирования различных видов транспортных топлив (газообразных и жидких углеводородов, спиртов, эфиров и др.) в синтез-газ непосредственно на борту транспортных средств.

Изобретение относится к двигателям, в частности к поршневым двигателям внутреннего сгорания, и может быть использовано для обеспечения их оперативного пуска при любых низкотемпературных условиях эксплуатации.

Изобретение относится к материалам с изменяющимся фазовым состоянием (PCMs), обладающим свойством трансформироваться при поглощении тепла из твердой или полутвердой фазы в жидкую фазу и, при испускании того же количества тепла, трансформироваться из жидкой фазы обратно в твердую фазу.

Изобретение относится к теплоаккумулирующему составу, содержащему фторид стронция 2,3-2,7 мас.%, хлорид стронция 65,9-66,4 мас.%, хлорид натрия 22,3-22,8 мас.%, вольфрамат стронция 8,5-9,0 мас.%.

Изобретение относится к теплоаккумулирующему составу, включающему бромид лития 51,13-53,27 мас.%, сульфат лития 30,21-32,33 мас.%, хлорид лития 16,64-17,47 мас.%. .
Изобретение относится к теплоаккумулирующему составу, включающему н-ундекан 90,3-91,7 мас.% и 8,3-9,7 мас.% н-пентадекан. .

Изобретение относится к теплоаккумулирующему составу, включающему фторид лития 7,1...7,8 мас.%, сульфат лития 24,8...26,8 мас.% и бромид лития 66,0...68,1 мас.%. .
Изобретение относится к фазопереходным теплоаккумулирующим материалам и может быть использовано для термостатирования объекта в условиях охлаждения или нагрева извне, в частности в медицине для хранения и транспортировки живых тканей и органов, в приборостроении при создании фазопереходных исполнительных датчиков, работающих при низких температурах.
Изобретение относится к области теплоэнергетики, в частности к разработке составов теплоаккумулирующих веществ на основе предельных углеводородов. .

Изобретение относится к смесям для аккумулирования тепловой энергии и к преобразователю солнечной энергии. .
Изобретение относится к области теплоэнергетики, в частности к разработке теплоаккумулирующих составов, включающих галогениды, метаванадаты, сульфаты и молибдаты щелочных элементов, которые применяются в качестве теплоаккумулирующих веществ.
Изобретение относится к разработке теплоаккумулирующих составов, включающих фториды, хлориды, сульфаты и молибдаты щелочных элементов, которые применяются в качестве теплоаккумулирующих веществ и может быть использовано в тепловых аккумуляторах и в устройствах для поддержания постоянной температуры, применяемых в теплотехнике, достигается тем, что теплоаккумулирующий состав содержит 5,8-6,2% фторида, 28,0-3,21% хлорида и 39,0-41,3% молибдата лития, 23,1-24,5% сульфата лития.

Изобретение относится к многокомпонентным волокнам, содержащим материал фазового превращения, к текстильным материалам, тканям и к впитывающим изделиям, содержащим многокомпонентные волокна
Изобретение относится к теплоэнергетике, в частности, к теплоаккумулирующему составу, который может быть использован в тепловых аккумуляторах и в устройствах для поддержания постоянной температуры

Изобретение относится к области теплоэнергетики, в частности к теплоаккумулирующим составам, используемым в тепловых аккумуляторах и в устройствах теплотехники

Изобретение относится к разработке теплоаккумулирующих составов, включающих фториды, бромиды и хроматы щелочных элементов, которые применяются в качестве теплоаккумулирующих веществ
Изобретение относится к разработке холодоаккумулирующих материалов, применяемых в термостабилизирующих устройствах, например в оптоэлектронике, в термоконтейнерах для транспортировки медицинских, биологических препаратов и пищевых продуктов

Изобретение относится к области машиностроения, а более конкретно к составам теплоаккумулирующих материалов, используемых в тепловых аккумуляторах

Наверх