Усилитель обратной связи для интегральных датчиков

Изобретение относится к емкостным датчикам и может использоваться в интегральных акселерометрах и гироскопах. Технический результат: расширение диапазона и повышение точности измерений за счет увеличения размеров неподвижных электродов. Увеличение размеров электродов при одной и той же площади обкладок стало возможным за счет разделения по времени режимов работы силовых электродов и электродов датчика перемещений. Важным преимуществом заявляемого устройства являются два фактора: 1 - при увеличенных размерах электродов (примерно в два раза) сила отработки также возрастает во столько же раз; 2 - при увеличенных размерах электродов, в режиме их работы в качестве датчика перемещений, снижаются шумы в выходном сигнале пропорционально относительному увеличению площади электродов (примерно в раза). 1 ил.

 

Известен усилитель обратной связи [1], содержащий раздельные электроды для датчика перемещений и датчика момента. Данный усилитель имеет малую электростатическую силу отработки из-за недостаточности места на неподвижной обкладке.

Известен также усилитель обратной связи [2], содержащий интегрально выполненные раздельные электроды для датчика перемещений и датчика момента, электронный блок усиления и фильтрации электрического сигнала. При интегральном исполнении известный усилитель имеет малую электростатическую силу отработки из-за недостаточности места на обкладке.

Наиболее близким к заявляемому устройству является усилитель обратной связи [3], содержащий подвижный электрод-маятник, выполненный в кремниевой пластине за одно целое с упругими подвесами и соединенный с «землей», первый и второй неподвижные электроды на стеклянных обкладках, соединенные с кремниевой пластиной молекулярной сваркой, симметричный мультивибратор, выходы которого соединены со входами фильтра нижних частот, первый и второй резистивные сумматоры, входы которых соединены с положительным и отрицательным источниками опорных напряжений, а к точкам суммирования подключен выход усилителя обратной связи, выходы первого и второго резистивных сумматоров соединены с первым и вторым неподвижными электродами.

Недостатком известного устройства является невозможность получения силы отработки электростатического преобразователя для компенсации более 1 g, т.к. на малой площади обкладок при интегральном изготовлении требуется разместить раздельные силовые электроды и электроды датчика перемещения.

Решаемая задача - устранение отмеченного недостатка за счет функционального совмещения с помощью одних, увеличенных по размерам электродов, режимов датчика перемещения и силовой отработки, разнесенных по времени.

Этот технический результат достигается тем, что в усилитель обратной связи [3], содержащий подвижный электрод-маятник, выполненный в кремниевой пластине за одно целое с упругими подвесами и соединенный с «землей», первый и второй неподвижные электроды на стеклянных обкладках, соединенные с кремниевой пластиной молекулярной сваркой, симметричный мультивибратор, выходы которого соединены со входами фильтра нижних частот, первый и второй резистивные сумматоры, входы которых соединены с положительным и отрицательным источниками опорных напряжений, а к точкам суммирования подключен выход усилителя обратной связи, выходы первого и второго резистивных сумматоров соединены с первым и вторым неподвижными электродами, в котором в соответствии с изобретением введены ключевое устройство и генератор синхросигналов, входы ключевого устройства соединены с времязадающими цепочками мультивибратора, а выходы подключены соответственно к первому и второму неподвижным электродам, управляющие входы ключевого устройства соединены соответственно с прямым и инверсным выходами генератора синхросигналов.

На чертеже приведена схема усилителя обратной связи для интегральных датчиков. Устройство содержит: первый 1 и второй 2 неподвижные электроды, выполненные на стеклянных обкладках методом вакуумного напыления слоев алюминия; подвижный электрод 3, выполненный в пластине из проводящего монокремния, соединенного с «землей»; ключевое устройство 4, имеющее первый и второй входы и первый, второй выходы и прямой и инверсный входы синхронизации, соединенные с прямым и инверсным выходами синхросигналов; симметричный мультивибратор 5, имеющий прямой и инверсный выходы, а также первую и вторую времязадающие цепочки, к которым подключены первый и второй входы ключевого устройства 4, а первый и второй выходы ключевого устройства соединены с первым 1 и вторым 2 неподвижными электродами; фильтр нижних частот 6, имеющий прямой и инверсный входы, к которым соответственно подключены прямой и инверсный выходы симметричного мультивибратора 5. Выход фильтра нижних частот соединен через с суммирующим входом резистивных делителей, на входы которых подключены соответственно положительный и отрицательный источники опорных напряжений, выходы резистивных делителей соединены с первым 1 и вторым 2 неподвижными электродами.

Работа заявляемого устройства осуществляется в два такта. На первом такте при отсутствии воздействия физической величины (линейного или углового ускорения, или кориолисовых сил) на подвижный электрод 3 он находится в нейтральном положении, а величины измерительных емкостей между 1-м и 3-м электродами, а также между 2-м и 3-м электродами равны между собой. При единичном значении инверсного синхросигнала открыты ключи Кл3 и Кл6, при этом к первой и второй времязадающим цепям мультивибратора 5 подключены одинаковые межэлектродные емкости. Мультивибратор 5 вырабатывает симметричный сигнал (меандр), который после усреднения на дифференциальном фильтре 6 нижних частот дает на выходе нулевой сигнал. На втором такте, при смене полярности синхроимпульса, ключи Кл3 и Кл6 закрываются, а ключи Кл4 и Кл5 открываются. К электродам 1 и 2 через открытые ключи Кл4 и Кл5 с суммирующими точками резистивных сумматоров одновременно подводится с выхода фильтра 6 нижних частот нулевой сигнал.

При наличии воздействий на подвижный электрод 3 измерительные емкости между 1-м и 3-м электродами, а также между 2-м и 3-м электродами не равны между собой. Полный цикл работы осуществляется также за два такта. При этом мультивибратор 5 вырабатывает не симметричные прямоугольные импульсы, скважность которых определяется величиной отклонения подвижного электрода 3. После усреднения импульсов мультивибратора на фильтре 6 нижних частот сигнал, пропорциональный ширине (разности длительностей прямого и инверсного сигналов мультивибратора 5), поступает в точки суммирования резистивных сумматоров и через открытые ключи Кл4 и Кл5 поступает на неподвижные электроды 1 и 2. Подвижный электрод 3 будет притягиваться в сторону, где между электродами больше алгебраическая сумма напряжений.

Важным преимуществом заявляемого устройства являются факторы: 1 - при увеличенных размерах электродов (примерно в два раза) сила отработки также возрастает во столько же раз; 2 - при увеличенных размерах электродов, в режиме их работы в качестве датчика перемещений, снижаются шумы в выходном сигнале пропорционально относительному увеличению площади электродов (примерно в раза).

Источники информации

1. Мокров Е.А., Папко А.А. Акселерометры НИИ физических измерений - элементы микросистемотехники. // Микросистемная техника. 2002. №1. С.3-9.

2. Авторское свидетельство СССР №1620944, G01B 15/08, от 15.01.1991.

3. Вавилов В.Д. Интегральные датчики. Изд-во НГТУ, 2003, 504 с.

Усилитель обратной связи для интегральных датчиков, содержащий подвижный электрод-маятник, выполненный в кремниевой пластине за одно целое с упругими подвесами и соединенный с «землей», первый и второй неподвижные электроды на стеклянных обкладках, соединенные с кремниевой пластиной молекулярной сваркой, симметричный мультивибратор, выходы которого соединены со входами фильтра нижних частот, первый и второй резистивные сумматоры, входы которых соединены с положительным и отрицательным источниками опорных напряжений, а к точкам суммирования подключен выход усилителя обратной связи, выходы первого и второго резистивных сумматоров соединены с первым и вторым неподвижными электродами, отличающийся тем, что в усилитель введено ключевое устройство и генератор синхросигналов, входы ключевого устройства соединены с времязадающими цепочками мультивибратора, а выходы подключены соответственно к первому и второму неподвижным электродам, управляющие входы ключевого устройства соединены соответственно с прямым и инверсным выходами генератора синхросигналов.



 

Похожие патенты:

Изобретение относится к области измерительной техники, а именно к автоматизированным системам контроля, и может быть использовано для измерения значения ускорения, скорости изменения ускорения (фронта), времени интегрирования, интеграла линейного ускорения, контроля состояния контактов, измерения значения постоянного напряжения и генерации постоянного напряжения при испытании на центробежных установках.

Изобретение относится к измерительной технике. .

Изобретение относится к приборостроению, а именно к акселерометрам. .

Изобретение относится к инерциальным приборам и может быть использовано в системах управления подвижных объектов различного назначения. .

Изобретение относится к измерительным устройствам и может использоваться для регистрации угловой составляющей сейсмических колебаний почвы, инженерных сооружений и вибрации.

Изобретение относится к измерительной технике и может использоваться для измерения углового ускорения, например в инерциальных системах навигации. .

Изобретение относится к измерительной технике и может найти применение в сейсмике и сейсморазведке, системах стабилизации движущихся объектов и системах инерционной навигации.

Изобретение относится к технике измерения линейных ускорений на борту транспортных средств и в составе испытательного оборудования с обеспечением возможности беспроводной прямой радиопередачи выходных сигналов в УКВ диапазоне.

Изобретение относится к измерительной технике и может быть использовано при создании микромеханических акселерометров и гироскопов. .

Изобретение относится к измерительной технике и может быть использовано при изготовлении интегральных акселерометров. .

Изобретение относится к измерительной технике и может быть использовано в интегральных акселерометрах с импульсной силовой компенсацией

Изобретение относится к измерительной технике и может быть использовано при решении задач навигации, управления и гравиметрии

Изобретение относится к преобразующим элементам устройств для проведения инерциальных измерений

Изобретение относится к обнаружению вращательного и поступательного движения

Изобретение относится к устройствам для измерения ускорения объекта в условиях вибрации и может быть использовано для контроля положения подвижного объекта

Изобретение относится к измерительной технике и может быть использовано для измерения угловых перемещений, скоростей и ускорений объектов в бесплатформенных инерциальных навигационных системах

Изобретение относится к измерительной технике, а именно к датчикам угловых ускорений, принцип действия которых основан на законе электромагнитной индукции

Изобретение относится к области измерительной техники, в частности к средствам измерения линейных ускорений, угловых скоростей и тепловых полей малой интенсивности в инфракрасной и терагерцовой области

Изобретение относится к измерительной технике и может применяться в интегральных акселерометрах

Изобретение относится к измерительной технике
Наверх