Волоконно-оптический датчик

Изобретение относится к ракетно-космической технике и предназначено для фиксации факта облучения космического аппарата (КА) внешним источником излучения при отсутствии необходимости определения точного направления на источник излучения. Датчик содержит входную поверхность в виде полусферы с коническими отверстиями для оптических волокон. Оптические волокна собраны в три жгута по количеству воспринимаемых диапазонов волн излучения. Размещаемые на платах фотоприемные устройства расположены в одной плоскости. Датчик также содержит вставку с уплотнением, фильтры и оправки для жгутов волокон, которые имеют на конце резьбу под гайку для крепления оправки к вставке. Технический результат - уменьшение габаритов. 2 ил.

 

Изобретение относится к ракетно-космической технике и предназначено для регистрации факта облучения космического аппарата (КА) внешним источником излучения при отсутствии необходимости определения точного направления на источник излучения. Датчик размещается на обшивке корпуса КА и имеет существенно меньшие габариты по сравнению с прототипом, конструктивная схема которого приведена в НТО НИИ ТМ за 1991 год и представлена на фиг.1, где обозначено: 1 - входная поверхность, состоящая из двух частей, с равномерно расположенными по поверхности входными коническими отверстиями с максимальным углом 50° для формирования поля зрения каждым волокном; 2 - оптические волокна (576 шт.), собранные в три жгута (по количеству диапазонов воспринимаемых волн излучения); 3 - металлическая оправка с фланцем с отверстиями для винтов крепления оправки; 4 - фильтр, приклеиваемый к торцевой части жгута; 5 - фотоприемное устройство, сопрягаемое с фильтром, воспринимающим излучения определенной области спектра волн излучения; 6 - платы для крепления фотоприемных устройств; 7 - плата для размещения элементов, требующихся для обработки сигналов; 8 - вставка для крепления оправок со жгутами и винтов для плат; 9 - уплотнение, 10 - корпус; 11 - электроразъем для электрических выводов датчика.

Пространство под входной поверхностью между волокнами для их устойчивости к внешним воздействиям заливается виксинтом. Внутренняя полость корпуса датчика с платами для фотоприемных устройств герметизируется клеевым соединением фильтров с торцами жгутов волокон и резиновыми уплотнениями у вставки, оправок и электроразъема.

Волоконно-оптический датчик, конструктивная схема которого приведена на фиг.1, из-за необходимости определения с высокой точностью направления на источник излучения имеет относительно сложную в изготовлении входную поверхность, относительно большие размеры, вызванные большим размером входной поверхности и большим количеством оптических волокон. Последнее, в свою очередь, усложняет операцию крепления оправок к вставке со стороны входной поверхности, пространство под которой заполнено волокнами. Увеличению размеров датчика способствует и последовательное расположение плат с фотоприемными устройствами.

Предлагаемый датчик, предназначенный для регистрации факта облучения КА и при отсутствии требования об обеспечении высокой точности определения направления на источник излучения, имеет существенно меньшие размеры благодаря существенно меньшему количеству волокон и отверстий для них, но достаточному для обозрения всего полупространства. Как показали расчеты, принимая входную поверхность в виде полусферы и равномерно располагая на ней отверстия с технологически оправданными расстояниями между отверстиями, равными ~10 мм, диаметр полусферы получается равным ~40 мм с 25 коническими отверстиями с углом конуса 40°, расположенными на полусфере по трем поясам. Благодаря малому количеству волокон размеры фотоприемных устройств существенно меньше, чем у прототипа, что позволяет размещать платы с фотоприемниками в одной плоскости, практически вписываясь в диаметр, равный диаметру входной поверхности. Оправки для малого количества волокон также имеют существенно меньший диаметр и их удобнее крепить к вставке с помощью гайки, для чего оправки имеют резьбу на конце.

Конструктивная схема предлагаемого датчика представлена на фиг.2, где обозначено: 1 - входная поверхность в виде полусферы с равномерно расположенными по поверхности 25 коническими отверстиями с углом обзора 40°; 2 - оптические волокна (75 штук), собранные в три жгута с плоскими полированными торцами и по три впрессованные в каждое коническое отверстие; 3 - металлическая оправка для жгута волокон с резьбой на конце оправки; 4 - фильтр, приклеенный к торцу жгута волокон; 5 - фотоприемное устройство; 6 - плата для фотоприемного устройства: 7 - плата для размещения элементов, требуемых для обработки сигналов; 8 - вставка; 9 - резиновое уплотнение; 10 - корпус; 11 - электроразъем: 12 - гайка для крепления оправки к вставке.

Сравнительный анализ показал, что предлагаемый датчик по сравнению с прототипом имеет в ~3,5 раза меньше диаметр, в ~2,5 раза меньшую высоту и в ~3,5 раза меньшую массу.

Волоконно-оптический датчик, содержащий входную поверхность с коническими отверстиями для оптических волокон, оптические волокна, оправки для жгутов волокон, вставку с уплотнением, фильтры и фотоприемные устройства, платы для фотоприемных устройств, отличающийся тем, что входная поверхность выполнена в виде полусферы диаметром 40 мм с равномерно расположенными 25 коническими отверстиями с углом конуса 40°, в каждое из которых запрессовано по три волокна (по количеству воспринимаемых датчиком диапазонов спектра излучений), платы для фотоприемных устройств размещены в одной плоскости, а оправки для жгутов волокон имеют на конце резьбу под гайку для крепления оправки к вставке.



 

Похожие патенты:

Изобретение относится к оптическому приборостроению. .

Изобретение относится к области измерительной техники, а именно к устройствам для измерения мощности оптического излучения, и может быть использовано, в частности, для измерения оптической мощности медицинских лазерных установок с волоконно-оптическим выходом.

Изобретение относится к области иммунологических исследований оптическими методами, в частности к приспособлениям для тестирования иммуноферментных анализаторов (ИФА) планшетного типа.

Изобретение относится к медицине, а именно к медицинским приборам для измерения оптических параметров кожи (светоотражения и светопоглощения). .

Изобретение относится к технической физике, более конкретно, к фотометрии, и может быть использовано при создании технологии инструментальной оценки параметров качества авиационных оптико-электронных средств (ОЭС) и систем дистанционного зондирования (ДЗ) на основе методов автоматизированной обработки и анализа изображений наземных мир, полученных ОЭС в натурных условиях, а также в разработках конструкций наземных мир видимого и инфракрасного диапазонов электромагнитного спектра.

Изобретение относится к устройствам для анализа проб и предназначено для загрузки-выгрузки проб при анализе образцов веществ, например, на низкофоновых бета-или фоторадиометрах.
Изобретение относится к оптическому приборостроению и предназначено для оценки светорассеивающих материалов. .

Изобретение относится к области контрольно-измерительной техники, более конкретно к устройствам для контроля параметров лазерного поля управления, создаваемого информационным каналом.

Изобретение относится к системам дистанционного измерения статического и акустического давления, приема и пеленгации шумовых и эхолокационных сигналов звуковых, низких звуковых и инфразвуковых частот в гидроакустических системах и сейсмической разведке, в системах охраны объектов на суше и в водной среде.

Изобретение относится к медицине, более точно к медицинской технике, и может быть использовано для определения рекомендуемого времени нахождения человека под воздействием УФ-облучения.

Изобретение относится к области защиты от жесткого УФ-излучения во время загара под солнцем

Изобретение относится к оптике, а именно к устройствам создания фоновой засветки без искажения спектра фонового излучения, в основном для проверки фоточувствительной поверхности фотоприемника

Изобретение относится к аппаратуре, применяемой для астрофизических исследований, и может быть использовано при наблюдении за звездным небом с помощью телескопа. Планетарный механизм содержит фотометр, состоящий из диска (1), снабженного осью (2), с выполненными в нем отверстиями, равноотстоящими друг от друга и от центра диска, в которых находятся светофильтры. Ось (2) взаимодействует с диском посредством обгонной муфты (3). В отверстиях диска расположены с возможностью вращения оправки (4), внешняя поверхность которых выполнена в виде зубчатых колес, взаимодействующих с центральным зубчатым колесом (5), неподвижно закрепленным на оси (2). Диск взаимодействует с основанием посредством другой обгонной муфты (7). Направления рабочих ходов обгонных муфт (3, 7) противоположны. Изобретение позволяет наряду с возможностью перемещения самих светофильтров осуществлять поворот каждого из светофильтров вокруг своей оси. 1 ил.
Изобретение относится к области фотометрических измерений и касается устройства для измерения чувствительности и пороговой энергии фотоприемных устройств. Устройство включает в себя источник непрерывного излучения, вращающееся зеркало или призму и щель, образующих импульсный источник излучения в виде ослабителя-преобразователя и ослабителя-формирователя пучка излучения в виде коллиматора, на оптической оси которого, ближе к фокальной плоскости, находится выходное отверстие фотометрического шара. Щель импульсного источника излучения расположена перед входным отверстием фотометрического шара. Расстояние от щели до зеркала или призмы, размер щели и скорость вращения зеркала или призмы выбираются таким образом, чтобы длительность импульса излучения за щелью была бы меньше длительности импульсной характеристики исследуемого фотоприемного устройства. Технический результат заключается в расширении динамического диапазона устройства. 1 з.п. ф-лы.

Изобретение относится к области прикладной оптики и касается устройства для приема изображений с переменной кривизной матрицы и внутренней трансфокацией. Устройство состоит из корпуса, подвижного тубуса, мембраны-подушки, на которой размещены подвижные двухслойные пиксели матрицы, и компрессора. Мембрана-подушка с двухслойными пикселями матрицы закреплена в корпусе с помощью возвратных пружин внутри цилиндра подвижного тубуса, что позволяет ей двигаться в продольном направлении для изменения фокуса. Изменение кривизны матрицы осуществляется за счет изменения давления внутри мембраны-подушки. Технический результат заключается в улучшении качества изображения по всей поверхности матрицы. 5 ил.

Изобретение относится к области оптических измерений и касается способа и устройства для оптического сравнения структурированных или неоднородно окрашенных образцов. При осуществлении способа участок образца, характеризуемый неоднородностью в структуре или цвете, освещается диффузным светом с помощью сферы Ульбрихта. Из света, отраженного от исследуемого участка образца, с помощью спектрометра формируется спектр интерференции, который отображается на камеру. Полученный спектр интерференции исследуемого образца используется в качестве значений образца, которые сравниваются с соответственно полученными значениями для идентичного участка эталонного образца. Технический результат заключается в упрощении способа и повышении точности измерений. 3 н. и 14 з.п. ф-лы, 5 ил.

Изобретение относится к области оптических измерений и касается способа определения оптических свойств наночастиц. Измерения проводят с использованием фотометрического шара. Коэффициент пропускания света и сумму коэффициентов пропускания и отражения света определяют с использованием аналитического решения уравнения переноса излучения в слое среды. Для определения коэффициентов эффективности рассеяния и поглощения излучения, а также фактора анизотропии индикатрисы рассеяния используют гистограмму распределения наночастиц по размерам. Технический результат заключается в обеспечении возможности раздельного определения оптических свойств наночастиц, связанных с поглощением и рассеянием света. 4 ил.

Изобретение относится к области измерительной техники и касается устройства для измерения энергии мощных импульсов лазерного излучения. Устройство включает в себя источник лазерного излучения, рассеивающую среду, световолоконный коллектор, ослабитель лазерного излучения, фотодиод, измерительно-вычислительный блок. В качестве рассеивающей среды используется диффузный рассеиватель, выполненный в виде цилиндрической шайбы из молочного стекла. На внешней поверхности шайбы равномерно по окружности закреплены с возможностью регулировки расстояния до поверхности рассеивателя разветвленные концы световолоконного коллектора. Коллектор обеспечивает передачу оптического сигнала через ослабитель на фотодиод. Выходной конец коллектора закреплен с возможностью регулировки расстояния до ослабителя. Технический результат заключается в увеличении диапазона и повышении точности измерений. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области измерительной техники и касается устройства для измерения энергии мощных импульсов лазерного излучения. Устройство включает в себя источник лазерного излучения, рассеивающую среду, световолоконные коллекторы, ослабители лазерного излучения, фотодиоды, измерительно-вычислительный блок. В качестве рассеивающей среды используется диффузный рассеиватель, выполненный в виде цилиндрической шайбы из молочного стекла. На внешней поверхности шайбы равномерно по окружности закреплены с возможностью регулировки расстояния до поверхности рассеивателя разветвленные концы, по меньшей мере, двух световолоконных коллекторов, обеспечивающих передачу рассеянного оптического сигнала на разных длинах волн через ослабители на фотодиоды. Выходные концы коллектора закреплены с возможностью регулировки расстояния до ослабителя. Технический результат заключается в повышении точности, расширении спектрального диапазона и мощности измеряемого излучения. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области измерительной техники и касается устройства для измерения энергии мощных импульсов лазерного излучения. Устройство включает в себя источник лазерного излучения, рассеивающую среду, световолоконный коллектор, ослабитель лазерного излучения, фотодиод, измерительно-вычислительный блок. В качестве рассеивающей среды используется диффузный рассеиватель, выполненный в виде цилиндрической шайбы из молочного стекла. Рассеиватель установлен во фланец, расположенный под небольшим углом к оптической оси лазерного пучка. На внешней поверхности шайбы равномерно по окружности закреплены с возможностью регулировки расстояния до поверхности рассеивателя разветвленные концы световолоконного коллектора. Коллектор обеспечивает передачу оптического сигнала через ослабитель на фотодиод. Выходной конец коллектора закреплен с возможностью регулировки расстояния до ослабителя. Технический результат заключается в повышении точности и увеличении диапазона плотности мощности измеряемого излучения. 2 з.п. ф-лы, 1 ил.
Наверх