Калибровочная установка

Изобретение относится к области метрологического обеспечения скважинной геофизической аппаратуры, а именно к калибровке аппаратуры по контролю технического состояния нефтяных и газовых скважин гамма-гамма методом. Техническим результатом изобретения является повышение точности измерений. Калибровочная установка содержит набор обсадных труб с цементным кольцом и заданными дефектами конструкции. Калибровочная установка содержит блок, воспроизводящий свойства породы и расположенный на горизонтальном основании. При этом вдоль вертикальной оси блока выполнен сквозной канал. Блок, воспроизводящий свойства породы, выполнен из двух равных подвижных частей, снабженных механизмами для возвратно-поступательного перемещения частей относительно друг друга по горизонтальному основанию. Вертикальная плоскость их раздела проходит по диаметру канала. Внутренний диаметр канала равен внешнему диаметру цементного кольца на обсадных трубах. При этом каждая из обсадных труб состоит из трех отрезков, последовательно соединенных между собой. Цементное кольцо расположено вдоль центрального отрезка и окружено герметичным корпусом. 3 ил.

 

Изобретение относится к области метрологического обеспечения скважинной геофизической аппаратуры, а именно к калибровке аппаратуры по контролю технического состояния нефтяных и газовых скважин гамма-гамма методом.

Из уровня техники известен ряд калибровочных устройств, обеспечивающих метрологический контроль скважинной геофизической аппаратуры.

Известна установка БПУ-НК для проверки аппаратуры нейтронного каротажа, состоящая из стандартизированной емкости, в которую заливается пресная вода, и комплекта стальных труб разного диаметра (имитаторов пористого пласта), имеющих герметично закрытое дно. Для калибровки скважинной аппаратуры на данной установке необходимо проверяемую аппаратуру поочередно устанавливать в каждый из имитаторов пористого пласта и опускать в емкость с водой. Пространство между трубой и проверяемым прибором не заполняется жидкостью, образуя воздушный слой, имитирующий условия, при которых показания проверяемой аппаратуры в имитаторе пористого пласта соответствуют реальным показаниям в пластах определенной пористости для нормальных условий. Блюменцев A.M., Калистратов Г.А., Лобанков В.М., Цирульников В.П. Метрологическое обеспечение геофизических исследований скважин. М., Недра, 1991, стр.138-142.

Известна установка для калибровки скважинных приборов гамма-каротажа, содержащая излучатель с источником гамма-излучения и отнесенные от излучателя на фиксированные расстояния калибруемый скважинный прибор с детектором и экран, который расположен между излучателем и детектором на линии соединения центра источника излучения с центром детектора скважинного прибора. Экран выполнен в виде цилиндрической кассеты, закрытой крышкой с коллимационным окном, полость кассеты разделена на равные секторы, заполненные прокалиброванными поглотителями с различной степенью поглощения гамма-излучения, при этом кассета установлена с возможностью вращения относительно крышки вокруг оси, параллельной линии соединения центра источника излучения с центром детектора скважинного прибора, таким образом, что коллимационное окно крышки и один сектор всегда находятся на указанной линии, а установка дополнительно снабжена устройством вращения кассеты и блоком сопряжения устройства вращения кассеты со скважинным прибором и управляющим компьютером. Поглотители изготовлены из образцов горных пород. Патент Российской Федерации №2231810, МПК: G01V 13/00, 2004.

Наиболее распространенной аппаратурой для решения задач по определению технического состояния скважин является аппаратура типа СГДТ - селективный гамма-дефектомер-толщиномер, предназначенный для определения плотности вещества в затрубном пространстве, эксцентриситета колонны и толщины обсадной колонны. Прибор СГДТ состоит из источника гамма-излучения, набора датчиков толщиномера и плотномера. Применение метода рассеянного гамма-излучения основано на зависимости интенсивности рассеянного излучения от плотности вещества основных сред, слагающих обсаженную скважину. Основными средами, определяющими интенсивность регистрируемого рассеянного гамма-излучения в скважине, являются металлическая колонна, жидкость внутри колонны, горные породы, цементный камень или буровой раствор. Интенсивность излучения - функция, зависящая от толщины колонны, толщины цементного кольца, плотности цемента и плотности породы. Для калибровки такой аппаратуры используют установки, содержащие трубы, на которых расположены цементные кольца. Трубы выполнены с разными диаметрами и разной толщины. Цементные кольца разной плотности и геометрии относительно металлической трубы концентричны или эксцентричны. И трубы и цементные кольца могут содержать искусственно привнесенные дефекты: разные толщины, пустоты в цементном кольце и т.п. Для калибровки по контролю технического состояния скважин гамма-гамма методом скважинную аппаратуру помещают последовательно в трубы, регистрируют сигналы, параметры которых зависят от параметров данной трубы и цементного кольца на ней. Следует отметить, что не удается полностью исключить взаимного влияния сигналов друг на друга. Техническая инструкция по проведению геофизических исследований и работ на кабеле в нефтяных и газовых скважинах. М., 2001 г., с.198. Прототип.

По сравнению с реальными условиями эксплуатации аппаратуры в калибровочных установках такого типа не учитывают влияния породы, что снижает точность измерений.

Данное устройство устраняет указанный недостаток. Технический результат изобретения - повышение точности измерений.

Технический результат достигается тем, что калибровочная установка скважинной аппаратуры по определению технического состояния скважин гамма-гамма методом, содержащая набор обсадных труб с цементным кольцом и заданными дефектами конструкции, содержит блок, воспроизводящий свойства породы, расположенный на горизонтальном основании, вдоль вертикальной оси блока выполнен сквозной канал, переходящий в зумпф, блок, воспроизводящий свойства породы, выполнен в виде двух равных подвижных частей, снабженных механизмами для возвратно поступательного перемещения частей относительно друг друга по горизонтальному основанию, а вертикальная плоскость их раздела проходит по диаметру канала, внутренний диаметр канала равен внешнему диаметру цементного кольца, окруженного герметичным корпусом. Каждая из обсадных труб состоит из трех отрезков, последовательно соединенных между собой, цементное кольцо расположено вдоль центрального отрезка.

Существо изобретения поясняется на фиг.1, 2 и 3, где 1 - блок, воспроизводящий свойства породы (из листового стекла из двух частей), 2 - обсадная колонна, 3 - цементное кольцо (в обечайке), 4 - механизм для возвратно-поступательного перемещения частей блока, 5 - сквозной канал, 5 - труба зумпфа, 6 - центрирующий вкладыш, 7 - седло зумпфа, 8 - спусковая воронка, 9 - подъемная серьга, 10 - горловина, 11 - съемные винты центровки, 12 - горизонтальное основание.

На фиг.2 представлен разрез по А-А с центральным положением обечайки.

На фиг.3 представлен разрез по А-А с эксцентричным положением обечайки.

Калибровочная установка предназначена для получения градуировочных зависимостей и выполнения калибровок аппаратуры, реализующей метод гамма-гамма цементометрии. Скважину и околоскважинное пространство имитируют двумя подвижными частями блока 1, воспроизводящего свойства породы. Подвижные части блока 1 собраны из листового стекла плотностью 2.5 г/см3. Для спуска обсадной колонны 2 с цементным кольцом 3 части блока 1 раздвигают с помощью механизмов 4 для возвратно-поступательного перемещения частей блока 1, а затем сдвигают для плотного охвата цементного кольца 3. Обсадная колонна 2 с цементным кольцом 3 представляет собой сменную вставку. Снизу обсадная колонна 2 заглушена и имеет конусную фаску для центровки. Средняя секция обсадной колонны 2 (против цементного кольца 3) имеет калиброванную толщину. Цементное кольцо 3 находится в пространстве между стальной обсадной колонной 2 и тонкостенной обечайкой из стеклопластика (толщина обечайки 3 мм, плотность 1.8 г/см3). Цементное кольцо 3 герметизировано кольцевыми крышками на обечайке. Обсадные колонны 2 выполнены как с центрированным, так и эксцентричным цементным кольцом 3. В верхней части на обсадной колонне 2 закреплено кольцо для захвата подъемной серьгой 9 тельфера. Пространство над кольцом 3 оставлено для посадки спусковой воронки 8. Средняя секция (против цементного кольца 3) имеет калиброванную толщину. Цементное кольцо 3 находится в пространстве между обсадной колонной 2 и тонкостенной обечайкой из стеклопластика (толщина обечайки 3 мм, плотность 1,8 г/см3). Цементное кольцо 3 герметизировано кольцевыми крышками на обечайке. Цементное кольцо 3 может быть как эксцентричным, так и центрированным относительно оси колонны. При эксцентричном цементном кольце 3 тонкая его часть может быть без зазора прижата к стеклянному блоку (для этого необходимо развернуть вставку так, чтобы оси колонны, обечайки и «скважины» находились в одной плоскости), при этом против толстой части цементного кольца 3 будет технологический зазор не более 2 мм. Количество вставок представленной конструкции не ограничено. Части блока 1 перемещают с помощью механизма 4 для возвратно-поступательного перемещения частей блока. Перемещение осуществляют вручную путем вращения рукояток механизма 4 для возвратно-поступательного перемещения частей блока. Усилие вращения не более 1 кг. Для центрирования вставок в трубе зумпфера предусмотрено: внизу - конусное посадочное седло 7, а в верхней части - сменные центрирующие вкладыши 6 (для колонн 146 мм и 168 мм соответственно). Для закрепления положения обсадной колонны 2 на горловине крышки предусмотрены центрирующие винты 11.

Установка комплектуется подъемными серьгами 9 и спусковыми воронками 8, соответственно для колонн 146 мм и 168 мм, а также приспособлением для извлечения центрирующих вкладышей 6. Обсадные колонны 2 диаметром 148 мм или 168 мм последовательно помещают и закрепляют в стеклянном блоке 1. Исследуемый прибор помещают и центрируют в колонне с помощью штатных центраторов. После ввода прибора в рабочий режим информация с него поступает на штатный регистратор. Полученная информация для колонн с разными дефектами обрабатывают и по результатам выдают заключение.

Калибровочная установка скважинной аппаратуры по определению технического состояния скважин гамма-гамма методом, содержащая набор обсадных труб с цементным кольцом и заданными дефектами конструкции, отличающаяся тем, что она содержит блок, воспроизводящий свойства породы, расположенный на горизонтальном основании, вдоль вертикальной оси блока выполнен сквозной канал, блок, воспроизводящий свойства породы, выполнен из двух равных подвижных частей, снабженных механизмами для возвратно-поступательного перемещения частей относительно друг друга по горизонтальному основанию, а вертикальная плоскость их раздела проходит по диаметру канала, внутренний диаметр канала равен внешнему диаметру цементного кольца на обсадных трубах, при этом каждая из обсадных труб состоит из трех отрезков, последовательно соединенных между собой, а цементное кольцо расположено вдоль центрального отрезка и окружено герметичным корпусом.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для контроля качества цементирования и технического состояния обсадной колоны скважины. .

Изобретение относится к геофизическим методам исследования скважин и может быть использовано для обнаружения пространственного положения зон растрескивания горных пород, образовавшихся при гидроразрыве, и определения их гидродинамических характеристик.

Изобретение относится к области геофизических исследований, применяемых при исследовании строения Земли, предпочтительно при исследовании разведочных, вспомогательных и промысловых скважин, а именно способов исследования характеристик геологических пластов вокруг скважины.

Изобретение относится к нефтяной промышленности и может быть использовано при определении уровня жидкости в межтрубном пространстве скважины, оборудованной электроцентробежным насосом (ЭЦН).
Изобретение относится к области геофизических приборов, применяемых при исследовании строения Земли, а именно приборов, применяемых при гамма-каротаже, и может быть использовано при анализе структуры геологических пластов вокруг скважины, а именно плотности пласта.

Изобретение относится к области геофизических исследований скважин и может быть использовано для контроля качества цементирования обсадных колонн скважин и магистральных трубопроводов методом рассеянного гамма-излучения.

Изобретение относится к области геофизических исследований скважин и может быть использовано в модулях гамма - гамма каротажа скважинных приборов. .

Изобретение относится к электрогидравлическому устройству управления для подземной крепи с клапанным блоком. .

Изобретение относится к области геофизических исследований и может быть использовано при исследованиях действующих нефтяных и газовых скважин, а также при проведении ремонтно-изоляционных работ.

Изобретение относится к области метрологического обеспечения скважинной геофизической аппаратуры, а именно к созданию стандартных образцов для калибровки скважинной аппаратуры нейтронного каротажа, работающей на газовых месторождениях и подземных хранилищах газа (ПХГ).

Изобретение относится к области метрологического обеспечения скважинной геофизической аппаратуры (СГА), а именно к созданию стандартных образцов для калибровки СГА нейтронного каротажа, работающей на газовых месторождениях и подземных хранилищах газа.

Изобретение относится к области сейсморазведки, а именно к средствам для определения параметров сейсмоприемников. .

Изобретение относится к области измерительной техники и может быть использовано в средствах регистрации колебаний грунта для определения их частотной характеристики и экспериментальной калибровки.

Изобретение относится к нефтяной и газовой промышленности для геофизических исследований действующих скважин. .

Изобретение относится к области дистанционного обнаружения объектов и измерения их характеристик в режиме реального времени и, в частности, может быть использовано для обнаружения взрывчатых веществ, скрытых на теле человека или в пассажирском багаже.

Изобретение относится к метрологическому обеспечению средств магнитного каротажа и может быть использовано для градуировки и проверки приборов, предназначенных для измерения магнитной восприимчивости горных пород в скважинах.

Изобретение относится к области интенсификации добычи нефти, газа, конденсата, в частности к устройствам для изучения физических свойств расклинивающих материалов.
Наверх