Датчик пожарной сигнализации

Датчик пожарной сигнализации предназначен преимущественно для использования в воздушно-транспортных средствах. Технический результат - повышение точности срабатывания датчика за счет равномерного распределения активного вещества вдоль сенсорной трубки. Датчик содержит пневмореле 5, соединенное с сенсорной трубкой 1 и выполненное в виде одной или более камеры 4, перекрытой диафрагмой и с электродом 7, расположенным напротив нее. Гибкая диафрагма способна под действием изменения давления в трубке контактировать с электродом и прерывать контакт. Открытый конец сенсорной трубки сообщается с полостью камеры (камер), ограниченной диафрагмой, а сенсорная трубка выполнена из металла и заполнена веществом, способным быть насыщенным водородом при низких температурах и адсорбировать его при нагревании в заданном диапазоне температур, причем вещество выполнено в виде нити, которая насыщается водородом в процессе изготовления датчика, при этом металлическая нить помещена в оплетку, выполненную из базальтовых нитей. 4 з.п. ф-лы, 3 ил.

 

Предлагаемое устройство относится к устройствам пожарной сигнализации, основанным на пневматическом принципе работы и предназначенным, в частном случае, для использования в воздушно-транспортных средствах.

Наиболее распространенный тип датчиков, которые используются в пожарной сигнализации самолетов, основан на использовании сенсорных трубок, изменение давления в которых, вызванное нагревом, передается в пневмореле, срабатывание которого формирует сигнал тревоги. Основные принципы построения таких датчиков изложены в патенте СН №371021. В соответствии с патентом сенсорная трубка выполнена из металла, наполнена веществом, чувствительным к температуре, способным менять давление в трубке. Обязательным условием для его использования является его возможность быть насыщенным газом при низких температурах и выделять его при нагревании в широком диапазоне повышения температур, а затем абсорбировать его при ее понижении. К таким веществам можно отнести большое число гидридов и псевдогидридов металлов. Например, щелочные и щелочно-земельные металлы, относящиеся к I и II группам Периодической таблицы Менделеева, соединяются с водородом в стехиометрическом соотношении. Водород реагирует с литием, кальцием, стронцием, барием и др. в стехиометрическом соотношении и образует соответствующий гидрид. Реакция - экзотермическая и обратимая. С элементами III (к которой относятся редкие земли и актиниды), IVα и Vα групп водород образует псевдогидриды. Содержание водорода в элементах этих групп изменяется как корень квадратный от величины давления, и оно уменьшается при увеличении давления. К элементам, которые ведут себя подобным образом при температуре более 300°С, относятся скандий, титан, ванадий, цирконий, тантал и редкие земли с атомным числом от 57 до 71 др. Эти соединения с водородом можно только условно назвать гидридами, потому что они являются нестехиометрическими.

Одним из вариантов выполнения датчика пожарной сигнализации является конструкция, которая содержит пневмореле, соединенное с сенсорной трубкой. Пневмореле выполнено в виде одной или более камеры, перекрытой диафрагмой и с электродом, расположенным напротив нее, причем диафрагма способна под действием изменения давления в трубке контактировать с электродом и прерывать контакт, открытый конец сенсорной трубки сообщается с полостью камеры (камер), ограниченной диафрагмой, а сенсорная трубка выполнена из металла и заполнена веществом, способным быть насыщенным водородом при низких температурах и адсорбировать его при нагревании, причем вещество выполнено в виде шихты или гранул, которые насыщаются водородом в процессе изготовления датчика.

Недостатком этого типа датчика является то, что порошок находится в контакте со стенками трубки и при перегреве может привариться к стенкам. Вторым недостатком является то, что порошок может перемещаться по трубке и в случае больших сотрясений, которые характерны для транспортных средств, может весь скопиться на одном участке трубки. При этом не вся поверхность трубки будет одинаково чувствительна к изменениям температуры измеряемого объекта.

Известен датчик пожарной сигнализации, описанный в патенте US №5691702. Его конструкция отличается от описанной выше тем, что в сенсорной трубке, помимо вещества, насыщенного водородом, содержится инертный газ, например гелий. Его наличие позволяет получить сигнал тревоги в случае механического повреждения трубки. Для этого в пневмореле должна быть сформирована камера, соединенная с сенсорной трубкой, в которой диафрагма постоянно контактирует с соответствующим электродом, а в случае разрушения трубки уменьшается содержание инертного газа в камере и диафрагма отходит от электрода, открывая ключ.

Наиболее близким по совокупности существенных признаков к предлагаемому является датчик, вариант выполнения которого приведен в патенте CH №371021, а также в патенте CH №391021 и других патентах этого же заявителя. Известный датчик содержит пневмореле, соединенное с сенсорной трубкой. Пневмореле выполнено в виде одной или более камеры, перекрытой диафрагмой и с электродом, расположенным напротив нее, причем диафрагма способна под действием изменения давления в трубке контактировать с электродом и прерывать контакт. Открытый конец сенсорной трубки сообщается с полостью камеры (камер), ограниченной диафрагмой, а сенсорная трубка выполнена из металла и заполнена веществом, способным быть насыщенным водородом при низких температурах и адсорбировать его при нагревании, причем вещество выполнено в виде нити, которая насыщается водородом в процессе изготовления датчика, обвитой металлической лентой в виде спирали, которая предохраняет ее от контакта со стенками трубки, препятствуя расплавлению нити и сваривания со стенками в период нахождения сенсорной трубки в высокотемпературной зоне.

В известной конструкции не исключена вероятность неточного срабатывания датчика. Это объясняется тем, что порошок, в который превращается нить при ее насыщении водородом, не очень хорошо удерживается лентой и может изменить свое положение вдоль трубки и сбиться в одном месте при тряске. В этом случае пневмореле может сработать при температуре, отличной от расчетной.

Технической задачей, решаемой изобретением, является создание датчика пожарной сигнализации, в котором обеспечивается равномерное распределение активного вещества вдоль сенсорной трубки.

Поставленная задача решается за счет того, что предлагаемый датчик, как и известный, содержит пневмореле, соединенное с сенсорной трубкой и выполненное в виде одной или более камеры, перекрытой диафрагмой и с электродом, расположенным напротив нее, причем диафрагма способна под действием изменения давления в трубке контактировать с электродом и прерывать контакт, при этом открытый конец сенсорной трубки сообщается с полостью камеры (камер), ограниченной диафрагмой, а сенсорная трубка выполнена из металла и заполнена веществом, способным быть насыщенным водородом при низких температурах и адсорбировать его при нагревании в заданном диапазоне температур, причем вещество выполнено в виде нити, которая насыщается водородом в процессе изготовления датчика. Но, в отличие от известного датчика, в предлагаемом металлическая нить помещена в оплетку, выполненную из базальтовых нитей.

Достигаемый технический результат - повышение надежности срабатывания в заданном диапазоне температур. Этот результат достигается за счет обеспечения равномерности распределения активного вещества вдоль трубки, т.к. увеличена сцепляемость металлического порошка, в который превращается нить при насыщении ее водородом, с внутренней поверхностью оплетки, которая намного менее гладкая, чем поверхность металлической ленты.

Совокупность существенных признаков, сформулированная в пункте 2 формулы изобретения, характеризует датчик пожарной сигнализации, в котором количество базальтовых нитей равно 8.

При таком значении нитей достигается наибольший технический результат. Сцепляемость порошка с оплеткой увеличивается с увеличением количества переплетений. Технически увеличить число нитей более названной величины практически невозможно, так как толщина самой металлической нити составляет величину от 0,625 до 1,25 мм.

Совокупность существенных признаков, сформулированная в пункте 3 формулы изобретения, характеризует датчик пожарной сигнализации, в котором сенсорная трубка дополнительно заполнена инертным газом.

Использование заполнения трубки инертным газом позволит дополнительно производить индикацию механического повреждения датчика.

Совокупность существенных признаков, сформулированная в пункте 4 формулы изобретения, характеризует датчик пожарной сигнализации, в котором количество камер в пневмореле равно двум.

Совокупность существенных признаков, сформулированная в пункте 5 формулы изобретения, характеризует датчик пожарной сигнализации, в котором количество камер в пневмореле равно трем.

Выполнение пневмореле с двумя камерами позволяет отдельными ключами определять механическое повреждение сенсорной трубки и повышение температуры выше критической, а при выполнении с тремя камерами возможно дополнительно отдельным ключом определять опасный перегрев, но температура которого ниже критической.

Изобретение иллюстрируется чертежами: на фиг.1 приведен пример выполнения датчика пожарной сигнализации с количеством камер пневмореле, равным 1, на фиг.2 приведена схема фрагмента сенсорной трубки, а на фиг.3 - пример выполнения датчика с тремя камерами пневмореле.

Датчик пожарной сигнализации выполнен в виде сенсорной трубки, соединенной с камерами пневмореле. На фиг.1 приведен вариант его выполнения с одной камерой. Стенки сенсорной трубки 1 выполнены из металла, их внутренняя поверхность не должна реагировать с веществом, которое находится внутри. В конкретном случае трубка выполнена из молибдена. Ее внешний диаметр равен 1,5 мм, а толщина стенок - 0,2-0,5 мм. Длина может быть от десятков сантиметров до нескольких метров. Она определяется величиной контролируемого объекта. Внутри трубки вдоль нее размещена циркониевая нить 2 (фиг.2), которая помещена в оплетку 3 толщиной 0,1 мм, выполненную из 8 базальтовых нитей. Один конец трубки соединен с частью камеры 4 пневмореле 5, которая ограничена диафрагмой 6. В процессе изготовления второй конец трубки подсоединяется к вакуумному насосу, и после откачки и нагревания производят накачку водорода. Металл нити абсорбируя водород превращается в гидрид. В рассматриваемом примере это гидрид циркония. Но при этом металл нити превращается в порошок, который удерживается в форме нити за счет того, что его форма определена многожильной оплеткой. Внутренняя поверхность оплетки состоит из большого числа узелков и впадин между ними, образованными переплетающимися базальтовыми нитями, которые удерживают частицы порошка на месте при тряске транспортного средства. Вторая функция базальтовой оплетки - предохранить частицы порошка от спекания его со стенками трубки при достижении температурой критических значений. Более детально конструкция сенсорной трубки иллюстрируется фиг.2, на которой приведен фрагмент трубки, часть которой вскрыта. Следующий возможный этап проводится при выполнении пневмореле в форме, показанной на фиг.3. Он заключается в дополнительной накачке трубки инертным газом. Затем этот конец трубки герметично закрывается. С этого момента пространство трубки и той части камеры, с которой она соединена, составляют одно целое.

Пневмореле выполнено в виде одной камеры (фиг.1), перекрытой тонкой, гибкой диафрагмой 6 и с электродом 7, расположенным напротив нее и изолированным от стенок камеры диэлектриком 8. В исходном положении диафрагма не контактирует с электродом, но при перегреве контролируемого объекта соединение циркония с водородом адсорбирует водород, давление на диафрагму увеличивается и она соединяется с электродом, т.е. ключ замыкается. При остывании объекта цирконий снова абсорбирует водород, давление на диафрагму уменьшается, она отходит от электрода и ключ размыкается.

Для контроля механической целостности датчика можно использовать пневмореле с двумя камерами с диафрагмами и электродами, расположенными напротив них, а для того, чтобы дополнительно контролировать предварительный перегрев, можно использовать пневмореле с тремя камерами, как показано на фиг.3. В данном примере камеры 4, 9 и 10 перекрыты диафрагмами 6, 11, 12, и напротив каждой из них расположен соответствующий электрод 7, изолированный от соответствующих стенок камер диэлектриком 8. Диаметр камеры 10, рассчитанный на перегрев, больше диаметра камеры 4, ключ которой замыкается при критической температуре. Выбор диаметра определен той температурой, которая для данного объекта будет свидетельствовать о перегреве.

Части всех камер, ограниченные диафрагмами, соединены с сенсорной трубкой через капилляр 13. Камеры могут быть выполнены на одной пластине 14 и закрыты боковыми пластинами 15. Все детали пневмореле выполнены из металла. В исходном положении диафрагма 11 находится в контакте с электродом 7, а диафрагмы 6 и 12 не касаются соответствующих электродов. Теперь будет рассмотрен вариант, при котором произошло повреждение корпуса сенсорной трубки, например сдавливание или трещина. В этом случае уменьшается давление на все диафрагмы за счет уменьшения давления инертного газа. Диафрагма 11 «отлипает» от электрода 7 и тем самым размыкает ключ. При этом уменьшение давления не скажется на положениях диафрагм 6 и 12. В случае перегрева контролируемого объекта в сенсорной трубке из циркония начинает выделяться водород, который увеличивает давление во всех камерах, но оно никак не меняет положение диафрагмы 11, находящейся в контакте с электродом. Первой изменит положение диафрагма 12, поскольку из-за большего диаметра камеры в ней давление на диафрагму будет больше, чем в камере 4, и она «прилипнет» к соответствующему электроду 7. Если в дальнейшем температура контролируемого объекта будет уменьшаться, давление водорода тоже будет уменьшаться и ключ разомкнется. Но если температура будет только увеличиваться, вплоть до критической, свидетельствующей о возгорании, диафрагма 6 тоже прилипнет к электроду 7, т.е. замкнет соответствующий ключ.

При тряске транспортного средства работа датчика не меняется. Его реакция на изменение температуры будет оставаться такой же, как и без тряски. Размещение активного вещества - циркония - в многожильной оплетке из базальтовых нитей обеспечивает его равномерное распределение вдоль нее, и за счет этого срабатывание датчика будет происходить в соответствии с заранее рассчитанными температурами.

1. Датчик пожарной сигнализации, содержащий пневмореле, соединенное с сенсорной трубкой и выполненное в виде одной или более камер, перекрытой диафрагмой и с электродом, расположенным напротив нее, причем диафрагма способна под действием изменения давления в трубке контактировать с электродом и прерывать контакт, при этом открытый конец сенсорной трубки сообщается с полостью камеры (камер), ограниченной диафрагмой, а сенсорная трубка выполнена из металла и заполнена веществом, способным быть насыщенным водородом при низких температурах и адсорбировать его при нагревании в заданном диапазоне температур, причем вещество выполнено в виде нити, которое насыщается водородом в процессе изготовления датчика, отличающийся тем, что металлическая нить помещена в оплетку, выполненную из базальтовых нитей.

2. Датчик пожарной сигнализации по п.1, отличающийся тем, что оплетка выполнена из 8 базальтовых нитей.

3. Датчик пожарной сигнализации по п.1, отличающийся тем, что сенсорная трубка дополнительно заполнена инертным газом.

4. Датчик пожарной сигнализации по п.1, отличающийся тем, что количество камер в пневмореле равно двум.

5. Датчик пожарной сигнализации по п.1, отличающийся тем, что количество камер в пневмореле равно трем.



 

Похожие патенты:

Изобретение относится к автоматизированному распознаванию пожаров на поверхности Земли посредством спутниковой системы. .

Изобретение относится к области пожарной безопасности. .

Изобретение относится к противопожарной технике, а именно к сигнализаторам дыма, и может быть использовано для обнаружения возгораний на ранней стадии при появлении дымовых аэрозолей.

Изобретение относится к системам дымовой сигнализации, предназначенным для использования на летательных аппаратах. .

Изобретение относится к области приборостроения, в частности к системам и устройствам формирования измерительной и управляющей информации по первичным параметрам, определяющим расход природного газа, и контроля его утечек в многоквартирных домах.

Изобретение относится к средствам обнаружения пожара, а именно к оптическим датчикам дыма с рассеянным оптическим излучением. .
Изобретение относится к способам формирования сигналов в устройствах управления, входящих в состав систем пожарной сигнализации, в частности сигналов выдачи команд для управления внешними устройствами пожарной автоматики - сиренами, вентиляторами и т.п.
Изобретение относится к автоматической пожарной сигнализации и позволяет повысить надежность работы линейных устройств на небольших объектах, например пожарных извещателей или управляющих модулей, и обеспечить их самодиагностику за счет контроля состояния и передачи дополнительного сигнала на приемно-контрольный прибор.

Изобретение относится к области приборостроения, в частности к устройствам формирования измерительной и управляющей информации по первичным параметрам, определяющим расход природного газа и контроля его утечек в многоквартирных домах.

Изобретение относится к противопожарной технике, а именно к сигнализаторам дыма, и может быть использовано для обнаружения возгораний на ранней стадии при появлении дымовых аэрозолей

Изобретение относится к пожарной сигнализации и предназначено для защиты объектов от пожара

Изобретение относится к области средств сигнализации дыма

Изобретение относится к области приборостроения, в частности к системам и устройствам формирования измерительной и управляющей информации по первичным параметрам, определяющим расход природного газа и контроль его утечек в многоквартирных домах

Изобретение относится к области приборостроения, в частности к устройствам дистанционного мониторинга балансов газовых потоков, утечек газа и продуктов сгорания при использовании природного газа в многоквартирных домах

Изобретение относится к противопожарной технике. Техническим результатом настоящего изобретения является повышение надежности обнаружения пожара и оптимизация количества пожарных извещателей в укрытиях газотурбинных газоперекачивающих агрегатов и на других опасных промышленных объектах, где для контроля загазованности в технологических помещениях повышенной взрывопожароопасности используются инфракрасные газоанализаторы горючих газов, связанные с пожарной автоматикой объекта, а также применяются другие промышленные газоанализаторы для обнаружения газов, имеющих плотность ниже плотности воздуха, принцип действия которых основан на поглощении молекулами определяемого газа энергии светового потока и вычислении концентрации определяемого газа по отношению опорного и измерительного сигналов. Технический результат достигается за счет того, что комплекс пожарной сигнализации и контроля загазованности дополнительно содержит технические средства контроля удельной оптической плотности воздушной среды в защищаемом помещении, вычисляемой по ослаблению опорного сигнала оптических промышленных газоанализаторов. Указанные технические средства выполнены с возможностью передачи данных об удельной оптической плотности воздушной среды прибору приемо-контрольному пожарному от оптических промышленных газоанализаторов. Причем указанные газоанализаторы позиционируются как комбинированные оптические газоанализаторы/извещатели пожарные оптико-электронные дымовые (дополнительно сертифицированы в области пожарной безопасности). При этом комплекс пожарной сигнализации и контроля загазованности должен дополнительно содержать средства для местной индикации дежурного режима и режима передачи тревожного извещения при превышении оптической плотности контролируемой воздушной среды порога срабатывания. 2 н.п. ф-лы, 2 ил.

Изобретение относится к средствам обнаружения пожара, а именно к оптическим датчикам дыма с рассеянным оптическим излучением. Технический результат заключается в повышении быстродействия заявляемого датчика при обеспечении равномерной чувствительности и высокой степени подавления фонового света. Сущность изобретения заключается в том, что в оптическом датчике дыма, содержащем основание с центральным сквозным отверстием, на нижней и верхней поверхностях которого соответственно смонтированы дымозаборная и измерительная камеры, при этом дымозаборная камера содержит закрепленные на нижней поверхности основания и распределенные в окружном направлении по его площади непрозрачные перегородки, установленные в окружном направлении с зазором друг относительно друга так, что их наружные концевые участки образуют разомкнутую боковую поверхность дымозаборной камеры, а их боковые стенки образуют сквозные каналы для прохода дыма, измерительная камера содержит закрепленное на верхней поверхности основания замкнутое боковое ограждение, источник света, фотоприемник, непрозрачный экран, препятствующий прямому попаданию излучения от источника света в фотоприемник, при этом согласно изобретению непрозрачные перегородки в дымозаборной камере выполнены в виде радиально ориентированных пластинчатых ребер, внутренние концевые участки которых расположены вблизи сквозного отверстия основания, образующих прямые сквозные каналы для прохода дыма, дымозаборная камера содержит пластинчатое дно, площадь которого соответствует площади сквозного отверстия основания, установленное под указанным отверстием на уровне, соответствующем уровню расположения нижних поверхностей ребер, с образованием щелевого зазора для проникновения дыма, а в измерительной камере расположены распределенные по периметру бокового ограждения элементы лабиринтной отражающей свет системы. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области электронной пожарно-охранной сигнализации, а именно к оптическим датчикам дыма. Технический результат заключается в повышении пылезащищенности датчика при минимизации зависимости его чувствительности от направленности дыма. Сущность изобретения заключается в том, что в датчике дыма, включающем крышку, снабженную щелями для забора дыма, дымовую камеру, установленную в нижней части крышки, содержащую зону обнаружения дыма, включающую замкнутое боковое ограждение, источник излучения, фотоприемник, а также расположенную ниже зоны обнаружения дыма зону захода дыма, включающую дно и дымонаправляющие ребра, согласно изобретению дымовая камера содержит плоское кольцевое основание, по периметру верхней поверхности которого расположено боковое ограждение, зона захода дыма содержит сформированный на нижней поверхности кольцевого основания с отступом от ее внешней кромки первый кольцевой бортик, дно выполнено в виде заглубленного относительно нижней поверхности кольцевого основания диска, размер и местоположение которого выбраны из условия образования кольцевого зазора между ним и внутренней кромкой кольцевого основания, дымонаправляющие ребра выполнены в виде вертикальных пластин, звездообразно установленных на нижней поверхности кольцевого основания так, что их наружные концевые участки расположены на первом кольцевом бортике, а нижние кромки внутренних концевых участков скреплены с дном, крышка имеет плоскую донную часть, содержащую краевой второй кольцевой бортик и внутренний третий кольцевой бортик, образующий со вторым кольцевым бортиком кольцевую канавку, и боковую поверхность, в придонной части которой выполнены окружные щелевые прорези, образующие отверстия для забора дыма, при этом в ребрах выполнены прорези под третий кольцевой бортик, геометрические размеры и местоположение первого, второго и третьего кольцевых бортиков, их взаимное расположение, а также взаимное положение дымовой камеры и крышки выбраны такими, что при установке дымовой камеры в крышку третий кольцевой бортик проходит через прорези ребер, а первый кольцевой бортик располагается в кольцевой канавке с зазором относительно ее нижней и боковых сторон. 4 ил.
Наверх