Импульсная аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях. Труба содержит форкамеру с электродами, отделенную от газодинамического тракта трубы диафрагмой, и поршень, образующий дифференциальный мультипликатор, надпоршневое пространство которого соединено с источником толкающего газа, а подпоршневое заполнено демпфирующей жидкостью и соединено с дренированной емкостью. Также труба снабжена компенсатором динамической составляющей мультипликатора, быстродействующим клапаном запуска системы стабилизации, контактирующим через поршень мультипликатора с полостью форкамеры. Корпус мультипликатора выполнен с возможностью разъема и при этом его надпоршневое пространство связано с ресивером толкающего газа через быстродействующий клапан запуска системы стабилизации, а подпоршневое пространство через гидравлический канал с регулируемой длиной с подпоршневым пространством компенсатора динамической составляющей мультипликатора. Форкамера снабжена стыковочным узлом и обратным клапаном для подключения соответственно импульсного высокоэнтальпийного адиабатического генератора и блока подачи смеси реагирующих газов и содержит устройство принудительного вскрытия диафрагмы, размещенное на выходе из форкамеры. Технический результат заключается в расширении экспериментальных возможностей аэродинамической трубы. 4 з.п. ф-лы, 3 ил.

 

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях.

Для получения рабочего газа с предельно высокими параметрами торможения потока используются различные аэродинамические установки кратковременного действия. К ним относятся импульсные аэродинамические трубы [1], где нагрев газа в форкамере осуществляется электрической дугой при постоянной плотности, аэродинамические трубы с адиабатическим сжатием рабочего газа, которые разделяются на установки с тяжелым поршнем [2] и с мультипликаторами давления [3]. В этих трубах повышение давления и нагрев рабочего газа осуществляются адиабатическим сжатием за счет кинетической энергии поршня либо мультипликатором давления.

Все перечисленные установки характеризуются высоким уровнем технической сложности, эксплуатационной опасности в связи с возможными сбоями в управлении технологическими процессами, поскольку после запуска установки участие человека в дальнейших операциях исключается. В качестве примеров можно рассмотреть некоторые недостатки, характерные для таких труб.

Для импульсной трубы [1] отсутствие электродугового разряда при прохождении команды "пуск" приведет к запуску дифференциального мультипликатора и росту давления в форкамере из-за перемещения мультипликатора, разрыву диафрагмы и, соответственно, к самопроизвольному пробою между электродами на этапе истечения рабочего газа через критическое сечение. В результате форкамера с мультипликатором давления выйдут из строя.

В адиабатической трубе с тяжелым поршнем [2] предусматривается использование помимо воздуха в качестве рабочего газа реакции разложения закиси азота в смеси с азотом (N2O+N2), которая после разложения образует газ, эквивалентный воздуху, но с более высокой начальной температурой. Из опыта эксплуатации гиперзвуковой импульсной трубы ИТПМ СО РАН ИТ - 302М с применением смеси газов известно, что в каналах большого удлинения, аналогичных каналу адиабатической трубы с поршнем, закись азота, подогретая электрической энергией, детонирует даже в смеси с воздухом. Это серьезное ограничение на использование закиси азота N2O в адиабатических установках с тяжелым поршнем. Кроме того, отсутствие системы стабилизации параметров рабочего газа при истечении через сопло ухудшает точность исследований.

Применение химических источников энергии для подогрева рабочего газа в [3] не предусмотрено технологическим процессом, что ограничивает возможности в моделировании высоких температур торможения.

Наиболее близким из известных решений к заявленному техническому решению является импульсная аэродинамическая труба [4]. Установка содержит разрядную камеру (форкамеру) с противоположно расположенными электродами, которая отделена от сопла, рабочей части основной диафрагмой. Разрядная камера содержит поршень, который образует дифференциальный мультипликатор. Надпоршневое пространство мультипликатора соединено с источником толкающего газа, а подпоршневое заполнено демпфирующей жидкостью и соединено посредством регулируемых сливных отверстий с дренированной емкостью.

Между большой ступенью поршня мультипликатора и емкостью с толкающим газом расположены нож и дополнительная диафрагма, отделяющая надпоршневое пространство от источника толкающего газа.

В предстартовом состоянии надпоршневое пространство заполнено сжатым газом невысокого давления с тем, чтобы скомпенсировать избыточную силу, действующую со стороны малой ступени мультипликатора при заполнении разрядной камеры рабочим газом. При этом мультипликатор, нож и дополнительная диафрагма находятся в соприкосновении друг с другом. При запуске установки происходит дуговой разряд в разрядной камере, давление и температура резко повышаются и мультипликатор под воздействием избыточной силы смещается в сторону дополнительной диафрагмы, перемещает нож и срезает диафрагму. Толкающий газ высокого давления (до 200 кг/см2) поступает в надпоршневое пространство и перемещает мультипликатор с постоянной скоростью. При этом рабочий газ с высоким давлением и температурой вытесняется из разрядной камеры в сопло.

Недостатками указанных технических решений является то, что при запуске возникают значительные динамические нагрузки, действующие на установку при старте поршня дифференциального мультипликатора. Кроме этого имеют место технические недостатки, связанные с балансировкой давлений в предстартовом состоянии между полостью разрядной камеры и полостью надпоршневого пространства, приводящие к преждевременному старту поршня из-за разрушения дополнительной диафрагмы и к возникновению критической ситуации. Применение химической энергии в качестве дополнительного источника нагрева рабочего газа невозможно из-за неуправляемого вскрытия основной диафрагмы (по давлению) и незавершенности по этой причине химической реакции.

Задачей предлагаемого технического решения является расширение экспериментальных возможностей импульсной аэродинамической трубы кратковременного действия путем увеличения диапазона реализуемых параметров торможения потока за счет использования различных источников нагрева рабочего газа [5] и стабилизации параметров потока в течение рабочего режима.

Использование изобретения позволит увеличить количество рабочего газа в форкамере, повысить температуру и давление и увеличить продолжительность рабочего режима или выходной диаметр сопла по сравнению с известными аэродинамическими трубами. Кроме этих качеств появится возможность сравнивать результаты исследований, полученные в одной установке при различных способах создания рабочего тела (газового потока) и при фиксированной геометрии газодинамического тракта трубы.

Поставленная задача достигается тем, что импульсная аэродинамическая труба содержит форкамеру с электродами, отделенную от газодинамического тракта трубы диафрагмой, и поршень, образующий дифференциальный мультипликатор, надпоршневое пространство которого соединено с источником толкающего газа, а подпоршневое заполнено демпфирующей жидкостью и соединено с дренированной емкостью, согласно изобретению труба снабжена компенсатором динамической составляющей мультипликатора, быстродействующим клапаном запуска системы стабилизации, контактирующим через поршень мультипликатора с полостью Б, форкамеры, причем корпус мультипликатора выполнен с возможностью разъема и при этом его надпоршневое пространство связано с ресивером толкающего газа через быстродействующий клапан запуска системы стабилизации, а подпоршневое пространство через гидравлический канал с регулируемой длиной с подпоршневым пространством компенсатора динамической составляющей мультипликатора, форкамера снабжена стыковочным узлом и обратным клапаном для подключения соответственно импульсного высокоэнтальпийного адиабатического генератора и блока подачи смеси реагирующих газов и содержит устройство принудительного вскрытия диафрагмы, размещенное на выходе из форкамеры.

Компенсатор динамической составляющей мультипликатора выполнен в виде коаксиального поршня, надпоршневая часть которого связана с дренированной емкостью для слива жидкости при торможении, а подпоршневое пространство через гидравлический канал с подпоршневым пространством дифференциального мультипликатора.

Быстродействующий клапан запуска системы стабилизации содержит цилиндр с поршнем и заглушкой, установленный по оси корпуса клапана на пилонах и образующий кольцевой канал Д с корпусом клапана, при этом кольцевой канал Д связывает ресивер через сквозной цилиндрический канал с надпоршневым пространством дифференциального мультипликатора, а в цилиндре между заглушкой и поршнем образована полость Г, к которой подсоединена пневмотрасса с манометром, вентилем и электромагнитным клапаном.

Поршень мультипликатора содержит систему обратной связи, выполненную в виде канала высокого давления, один конец корпуса которого неподвижно закреплен на торце малой ступени поршня и сообщается с полостью Б форкамеры, а второй конец корпуса канала подвижно входит в пневмоцилиндр высокого давления, где расположен поршень со штоком, который через канал В во фланце корпуса мультипликатора взаимодействует с поршнем быстродействующего клапана запуска системы стабилизации.

Устройство управляемого вскрытия диафрагмы содержит корпус с поршнями, расположенными по его торцам с жидкостью между ними, при этом поршень, обращенный к диафрагме оснащен ножом и приводится в движение вторым поршнем, на который воздействует подрывное устройство, управляемое с пульта.

Конструктивное решение импульсной аэродинамической трубы, а именно последовательно расположенные ресивер с толкающим газом, компенсатор динамической составляющей поршня дифференциального мультипликатора, расположенный по оси трубы, быстродействующий пневмоклапан запуска системы стабилизации, взаимодействующий с полостью форкамеры через поршень со штоком, встроенные в поршень дифференциального мультипликатора, дифференциальный мультипликатор, подпоршневое пространство которого заполнено жидкостью, приводящей в действие систему компенсации динамики поршня дифференциального мультипликатора; форкамера с коаксиальными электродами, длина которой допускает адиабатическое сжатие рабочего газа и диафрагма с управляемым по времени вскрытием, при скоростях движения поршней системы компенсации и дифференциального мультипликатора задаются расходом жидкости, перетекающей из подпоршневого пространства мультипликатора в надпоршневое пространство поршня компенсатора динамической составляющей мультипликатора; быстроразъемный корпус мультипликатора, все это обеспечивает возможность решения многих экспериментальных задач в одной аэродинамической трубе.

Гиперзвуковая импульсная аэродинамическая труба кратковременного действия со стабилизацией параметров потока обеспечивает следующие режимы работы.

На режимах с адиабатическим сжатием:

1 - адиабатический нагрев воздуха;

2 - дуга + химическая энергия + адиабатический нагрев, например: дуга + воздух + N2O + N2 (85% N2O + 15% N2) + Н2 + О2 или дуга + Н2 + O2 + воздух; возможно использование других горючих газов, например пропана C3H8.

На режимах без адиабатического сжатия (варианты работы в режиме стабилизации параметров потока):

3 - электрическая дуга + воздух;

4 - дуга + воздух + химическая энергия, например: дуга + воздух + N2O + N2.

Перечисленные признаки не выявлены в других технических решениях при изучении уровня данной области техники и, следовательно, техническое решение является новым.

На фиг.1 показана схема импульсной аэродинамической трубы кратковременного действия со стабилизацией параметров потока; на фиг.2 - схемы устройства запуска дифференцированного мультипликатора давления и быстродействующего клапана запуска системы стабилизации, на фиг.3 - схема узла управляемого вскрытия диафрагмы.

Импульсная аэродинамическая труба кратковременного действия со стабилизацией параметров потока содержит ресивер 1 с толкающим газом, манометром для контроля давления в баллоне и пневмотрассу с вентилем 2. К ресиверу 1 присоединен компенсатор 3 динамической составляющей движения поршня 4 дифференциального мультипликатора 5. Компенсатор 3 состоит из коаксиального поршня 6, сквозного цилиндрического канала 7, емкости 8 с крышкой для слива жидкости из полости А, используемой для торможения коаксиального поршня 6; пневмотрассы 9 с манометром и электромагнитного клапана двойного действия. Подпоршневое пространство 10 коаксиального поршня 6 с демпфирующей жидкостью соединено гидравлическим каналом с регулируемой длиной 11 с подпоршневым пространством 12 дифференциального мультипликатора давления 5. В верхней точке гидравлического канала 11 расположен небольшой дренированный объем 13 с обратным клапаном для выхода газовых пузырьков из демпфирующей жидкости. Гидравлический канал 11 выполнен с возможностью регулирования его длины, при необходимости удлинения или укорочения длины и имеет вентиль 14 для изменения площади проходного сечения.

Компенсатор 3 динамической составляющей мультипликатора через фланец 15 соединен с быстродействующим клапаном запуска системы стабилизации 16 (фиг.2). Быстродействующий клапан 16 с другой стороны присоединен через фланец 17 с каналом В к корпусу дифференциального мультипликатора давления 5.

Корпус дифференциального мультипликатора давления 5 выполнен разъемным и состоит из двух частей, которые соединены между собой быстроразъемным соединением. Подпоршневая часть корпуса через фланец 18 с лабиринтным уплотнением (не показано) присоединена к форкамере 19.

Форкамера 19 содержит пневмотрассу 20 с вентилем для заполнения сжатым воздухом полости Б, коаксиальные электроды 21 с конденсаторной батареей, вентиль 22 с манометром для контроля давления при зарядке форкамеры 19 сжатыми газами. Для заполнения форкамеры азотом и реагирующими газами через обратный клапан 23 используется стыковочный блок 24, к которому подведены пневмотрассы с вентилями от баллонов с азотом, закисью азота, пропаном, кислородом и водородом. Причем стыковочный блок 24 после заполнения форкамеры 19 смесью реагирующих газов перед запуском дистанционно отводится от трубы.

На корпусе форкамеры 19 также находятся стыковочный узел 25 с обратным клапаном для подсоединения импульсного высокоэнтальпийного адиабатического генератора 26.

Поршень мультипликатора 4 в предстартовом состоянии находится в крайнем левом положении и может взаимодействовать с быстродействующим клапаном запуска системы стабилизации 16 через систему обратной связи. Схема взаимодействия показана на фиг.2.

Поршень мультипликатора 4 (фиг.2) состоит из малой ступени 27, большой ступени 28 поршня и системы обратной связи, обеспечивающей быстрое открытие пневмоклапана 16 (2-5 мс). Основная функция этой системы состоит в том, чтобы предотвратить включение в работу мультипликатора давления при отсутствии электродугового разряда в форкамере (отсутствие роста давления) либо при незавершенности химической реакции (давление в форкамере не повысилось до определенного уровня). Система состоит из канала высокого давления 29, один конец цилиндрического корпуса которого неподвижно закреплен на торце малой ступени поршня 27 и сообщается с полостью Б форкамеры 19, а второй конец корпуса канала подвижно входит в пневмоцилиндр высокого давления 30, где расположен поршень 31 со штоком 32. Шток 32 в предстартовом состоянии трубы через канал В большого сечения во фланце 17 корпуса мультипликатора давления 5 соприкасается (или находится вблизи) с поршнем 33 быстродействующего клапана (фиг.2). Поршень размещен в цилиндре 34, расположенном по оси корпуса клапана на пилонах и образующем кольцевой канал Д с корпусом клапана 16. Через кольцевой канал Д толкающий газ из ресивера 1 по сквозному цилиндрическому каналу 7 подводится в надпоршневое пространство дифференциального мультипликатора 5. В цилиндре 34 между заглушкой 35 и поршнем 33 выполнена полость Г, к которой подсоединена пневмотрасса 36 с манометром, вентилем и электромагнитным клапаном.

Полость Б форкамеры 19 (фиг.1) перед началом работы трубы изолируется от дросселирующей камеры 37 и сопла 38 (газодинамического тракта трубы) с помощью диафрагмы 39 и устройства управляемого вскрытия 40 (фиг.2). Управляемое вскрытие диафрагмы необходимо при использовании химических источников энергии при нагреве рабочего газа, с тем, чтобы реакция в форкамере завершилась полностью и только после окончания реакции произошло вскрытие диафрагмы при поступлении электрического сигнала с пульта управления (не показано). Обычно это время изменяется от нескольких миллисекунд до десятков миллисекунд.

При отсутствии химических источников энергии применяется диафрагма без устройства управляемого вскрытия, разрушающаяся под воздействием давления.

На фиг.3 схематично изображено устройство 40 управляемого (принудительного) вскрытия диафрагмы 39, которое содержит корпус с поршнями 41 и 42, расположенными по его торцам с жидкостью между ними, при этом поршень 41, обращенный к диафрагме 39 оснащен ножом 43 и приводится в движение вторым поршнем 42, на который воздействует подрывное устройство 44, управляемое с пульта. Нож имеет квадратное сечение с тремя режущими кромками (не показано). Четвертая кромка заглублена внутрь ножа и не участвует во вскрытии диафрагмы.

При подаче электрического импульса на подрывное устройство 44 происходит подрыв порохового заряда. Давление между поршнем 42 и поджигающим устройством 44 резко возрастает и через поршень передается на жидкость между поршнями. Под воздействием давления в жидкости подвижный поршень 41 вместе с ножом 43 смещаются вправо. Нож тремя режущими кромками надрезает по периметру диафрагму 39, которая под воздействием давления в форкамере вскрывается и отгибается по потоку вдоль четвертой кромки.

Материал и толщина диафрагмы подбираются такими, чтобы выдержать ожидаемое давление в форкамере (например, 1000 бар).

Работа импульсной трубы при числах Маха М=4-7 осуществляется с использованием дросселирующей камеры 37, которая присоединяется к корпусу форкамеры 19. При экспериментах в диапазоне чисел М=8-20 дросселирующая камера 37 не используется и сопло 38 непосредственно присоединяется к корпусу форкамеры 19. В связи с многовариантностью рабочих режимов универсальной гиперзвуковой импульсной аэродинамической трубы кратковременного действия со стабилизацией параметров потока рассмотрим каждый из них.

Пример 1

Работа импульсной аэродинамической трубы в режиме адиабатического нагрева рабочего газа.

Подготовка трубы к пуску предусматривает выполнение следующих операций (фиг.1, 2).

Перед экспериментом газодинамический тракт трубы, включая дросселирующую камеру 37, сопло 38, рабочую часть и выхлопную вакуумную емкость (не показано) изолируют от форкамеры 19 диафрагмой 39 без устройства управления вскрытием диафрагмы (отсутствует химический подогрев) и откачивают вакуумными насосами до давления ~ 10-2 мм рт. ст.

Полость Г быстродействующего клапана запуска системы стабилизации 16 заполняют сжатым газом, при этом поршень 33 смещается вправо и закрывает канал В во фланце 17.

Ресивер 1 через вентиль 2 заполняется воздухом до рабочего давления (50-200 кг/см2), при этом одновременно заполняется и сквозной цилиндрический канал 7 вплоть до канала В.

Крышка емкости 8 закрывается и в полость А подается небольшое избыточное давление из пневмотрассы 9 с помощью электромагнитного клапана двойного действия (при отсутствии напряжения на клапане происходит сброс давления из полости А в атмосферу, при наличии напряжения - сброс давления прекращается, происходит наполнение полости А сжатым воздухом). При этом поршень 6 смещается вправо, вытесняя жидкость из подпоршневого пространства 10 коаксиального поршня 6, через гидравлический канал 11 в подпоршневое пространство 12 дифференциального мультипликатора давления 5. При прохождении жидкости через канал 11 обратный клапан дренированного объема 13 автоматически закрывается. Под воздействием давления жидкости поршень 4 дифференциального мультипликатора 5 смещается влево до крайнего положения. Крышка емкости 8 открывается. К корпусу форкамеры 19 (к узлу 25) пристыковывается импульсный адиабатический генератор высокоэнтальпийного газа 26. Вентиль 22 контроля уровня давления в полости Б форкамеры 19 закрывается.

Импульсная труба готова к пуску.

При запуске включается в работу импульсный адиабатический генератор 26 и полость Б форкамеры 19 через стыковочный узел 25 и обратный клапан заполняется рабочим газом при давлении ~200 кг/см2 и температуре ~(1200-1500) К. При достижении расчетного давления в полости форкамеры Б, сила, действующая на поршень 31 (фиг.2) со штоком 32, превысит запирающее усилие, действующее на поршень 33 быстродействующего клапана запуска системы стабилизации 16 со стороны полости Г (давление запирания выбирается перед пуском трубы исходя из соотношения площадей поршней и давления в форкамере). Поршень 33 отойдет влево и приоткроет кольцевой канал Д, ширина которого определяется величиной хода поршня 31.

При этом толкающий газ через канал В во фланце 17 поступает в надпоршневое пространство дифференциального мультипликатора давления 5. Под воздействием давления толкающего газа поршень 33 быстродействующего пневмоклапана 16 отходит в крайнее левое положение и полностью открывает канал В во фланце 17 для прохождения газа. Дифференциальный мультипликатор давления 5 начинает адиабатически сжимать рабочий газ в полости Б форкамеры 19 с постоянной скоростью до параметров, определяемых давлением толкающего газа, соотношением площадей большой 28 и малой 27 ступеней дифференциального поршня 4 и нарастающим давлением в полости Б форкамеры 19. Величина постоянной скорости поршня 4 мультипликатора 5 выбирается исходя из расхода рабочего газа и задается расходом демпфирующей жидкости через гидравлический канал 11 вентилем 14 перед пуском. Одновременно со стартом поршня 4 дифференциального мультипликатора 5 под воздействием демпфирующей жидкости стартует коаксиальный поршень 6 системы компенсации динамической составляющей 3, который движется в обратную сторону. Масса коаксиального поршня 6 при настройке системы компенсации подбирается таким образом, чтобы не было отдачи на корпус трубы в момент старта поршня 4 дифференциального мультипликатора 5. При отсутствии системы компенсации величина отдачи может достигать нескольких десятков тон.

На заключительном этапе сжатия рабочего газа в форкамере 19 диафрагма 39 (без устройства управляемого вскрытия) вскрывается под воздействием высокого давления и рабочий газ с постоянным расходом выжимается или в дросселирующую камеру 37 с соплом 38 при (М=4-7), или напрямую в сопло 38 при эксперименте со скоростями М=8-20.

В конце рабочего цикла торможение поршня 4 дифференциального мультипликатора 5 осуществляется лабиринтным уплотнением, находящимся на большой ступени 28 поршня и на фланце 18.

Торможение коаксиального поршня 6 происходит на начальном этапе небольшим повышением давления в полости А (крышка емкости 8 открыта), а на конечном этапе с помощью жидкости, проходящей через лабиринтные уплотнения на коаксиальном поршне 6 и фланце 18. При этом жидкость перетекает в дренированную емкость 13.

Пример 2

Работа импульсной аэродинамической трубы в режиме дуга + химическая энергия + адиабатический нагрев (без импульсного генератора адиабатического нагрева 26).

Поскольку подготовка установки к пуску представлена в предыдущем разделе, здесь будет дано описание только тех изменений технологического процесса, которые необходимы для реализации данного режима.

Поскольку в этом примере работы трубы используется химическая энергия, то форкамера изолируется от газодинамического тракта диафрагмой 39 с устройством управляемого вскрытия 40. От стыковочного узла 25 отсоединяется импульсный адиабатический генератор 26 (если он был подсоединен). При этом обратный клапан стыковочного узла 25 герметично изолирует полость Б форкамеры 19 от внешней среды. Вентиль 22 для контроля давления в форкамере открыт.

К форкамере 19 через обратный клапан 23 присоединяется стыковочный блок 24 для заполнения полости Б форкамеры смесью заранее определенных типов газов. Заполнение осуществляется дистанционно с пульта управления (не показано), включая также заполнение воздухом из пневмотрассы 20. Контроль давлений осуществляется манометром 22. После заполнения форкамеры 19 газами вентиль 20 закрывают, стыковочный блок 24 отводят дистанционно с пульта управления от форкамеры, разрывая механическую связь с корпусом. Обратный клапан 23 автоматически закрывается при отводе стыковочного блока. Конденсаторная батарея 21 заряжается до необходимого напряжения.

При запуске трубы происходит разряд конденсаторной батареи 21 в форкамере 19 с выделением тепловой энергии. Время горения дуги ~1 мс. В процессе горения дуги водород (пропан С3Н8) воспламеняется, вступая в реакцию с кислородом, давление и температура смеси повышается. При достижении температуры (900-1200) К начинается реакция разложения закиси азота с выделением тепла. Продолжительность реакции составляет от нескольких миллисекунд до нескольких десятков миллисекунд, в зависимости от процентного содержания закиси азота в смеси. При достижении давления в форкамере, близкого к максимальному, усилие, действующее на поршень 31 со штоком 32 (фиг.2), превысит запирающее усилие со стороны полости Г и поршень 33 отойдет влево от седла корпуса быстродействующего клапана 16. Канал В откроется и толкающий газ поступит в надпоршневое пространство дифференциального мультипликатора 5.

Под воздействием давления толкающего газа поршень 33 быстродействующего пневмоклапана 16 отходит в крайнее левое положение и полностью откроет канал В для прохождения газа. Поршень 4 мультипликатора начнет адиабатически сжимать рабочий газ в полости Б с постоянной скоростью до параметров, определяемых давлением толкающего газа, соотношением площадей большой 28 и малой 27 ступеней дифференциального поршня 4 мультипликатора 5. Величина постоянной скорости поршня 4 дифференциального мультипликатора 5 выбирается исходя из расхода рабочего газа и задается расходом демпфирующей жидкости через гидравлический канал 11 вентилем 14 перед пуском.

Через промежуток времени с момента разряда конденсаторной батареи, включающий время реакции химических компонент (3-40) мс и (30-50)% времени движения поршня 4, подается сигнал на устройство 40 управляемого вскрытия диафрагмы 39 (фиг.3).

При подаче электрического импульса на поджигающее устройство 44 происходит подрыв порохового заряда. Давление между поршнем 42 и поджигающим устройством 44 резко возрастает и через поршень передается на жидкость между поршнями 41 и 42. Под воздействием давления в жидкости подвижный поршень 41 вместе с ножом 43 смещаются вправо. Нож тремя режущими кромками надрезает по периметру диафрагму 39, которая под воздействием давления в форкамере вскрывается и отгибается по потоку вдоль четвертой кромки.

Одновременно со стартом поршня 4 дифференциального мультипликатора под воздействием демпфирующей жидкости стартует коаксиальный поршень 6 компенсатора 3 динамической составляющей мультипликатора, который движется в обратную сторону. Торможение поршней 4, 6 на заключительном этапе работы описано в предыдущем примере.

Пример 3

Работа импульсной аэродинамической трубы в режиме дуга + воздух.

При подготовке трубы к работе в обычном классическом режиме (нагрев рабочего газа осуществляется только дугой), поршень 4 сдвигается вправо до упора и левая часть быстроразъемного корпуса мультипликатора 5 убирается. Фланец 17 левой части корпуса мультипликатора 5 с быстродействующим пневмоклапаном 16 и другими системами установки присоединяется к правой части корпуса мультипликатора 5. При этом укорачивается и гидравлический канал 11. После выполнения этих операций в полость А при закрытой крышке емкости 8 подается избыточное давление с помощью клапана двойного действия 9. При этом коаксиальный поршень 6 и поршень 4 дифференциального мультипликатора 5 возвращается в предстартовое положение. Форкамера 19 изолируется от газодинамического тракта трубы 37 и 38 диафрагмой 39 без устройства управляемого вскрытия.

В принципе, величина фиксированного объема форкамеры 19 (полость Б) может выбираться в широких пределах за счет сменной левой части корпуса мультипликатора 5, исходя из величины максимальной энергии, запасаемой в конденсаторной батарее 21, и максимальных величин параметров торможения, которые необходимо реализовывать в конкретных задачах.

Вентилем 20 проводится заполнение полости Б сжатым воздухом. Конденсаторная батарея 21 заряжается до необходимого напряжения.

При запуске трубы происходит разряд конденсаторной батареи 21. Давление и температура газа в течение ~1 мс резко увеличиваются. Диафрагма 39 под воздействием давления вскрывается. Вскрытие обычно происходит в течение горения дуги, однако это не влияет практически на величину ожидаемых параметров торможения. Одновременно происходит запуск системы стабилизации параметров потока в форкамере 19 трубы (запуск поршня дифференциального мультипликатора 5). Зная величину ожидаемого давления в полости Б и задавая величины давления толкающего газа и расхода жидкости вентилем 14 через гидравлический канал 11 получаем стабилизированное по давлению и температуре истечение газа из форкамеры 19 в газодинамический тракт трубы.

Пример 4

Работа импульсной аэродинамической трубы в режиме дуга + воздух + химическая энергия.

Перед подготовкой трубы к пуску все системы приводятся в предстартовое состояние. Форкамера изолируется от газодинамического тракта диафрагмой с устройством управляемого вскрытия 40.

Стыковочный блок 24 подводится к форкамере 19 и механически соединяется через обратный клапан 23 с полостью Б. Форкамера 19 поочередно заполняется смесью газов, например закисью азота N2O и N2 в соотношении 85% N2O, 15% N2. Аналогично может использоваться химическая энергия других компонент (Н2, C3H8). Далее происходит заполнение воздухом с помощью вентиля 20. Затем стыковочный блок 24 отводится от форкамеры, разрывая механическую связь с корпусом.

Производится зарядка конденсаторной батареи 21.

При запуске установки происходит разряд батареи 21, температура и давление газа увеличиваются. При достижении температуры (900-1200) К начинается реакция разложения закиси азота с выделением тепла. В результате разложения в сочетании с 15% азота образуется газ, эквивалентный нагретому воздуху. Продолжительность реакции разложения составляет от нескольких миллисекунд до нескольких десятков миллисекунд, в зависимости от процентного содержания закиси азота в смеси, и сопровождается ростом давления в полости Б. Продолжительность реакции определяется экспериментально без включения поршня 4 дифференциального мультипликатора 5 в работу.

При достижении давления в форкамере 19, близкого к максимальному при разложении закиси азота, усилие, действующее на поршень 31 со штоком 32 (фиг.2), превысит запирающее усилие со стороны полости Г и поршень 33 отойдет влево от седла клапана 16. Канал В откроется и толкающий газ поступает в надпоршневое пространство дифференциального мультипликатора 5.

Одновременно с включением в работу поршня мультипликатора подается сигнал на устройство управляемого вскрытия 40 диафрагмы 39. При вскрытии диафрагмы рабочий газ с постоянным расходом вытесняется из форкамеры 19.

Конструктивное решение импульсной аэродинамической трубы позволило расширить ее экспериментальные возможности.

Источники информации

1. Патент США №3418445, кл. 73-147, 1968.

2. Патент РФ №2093716, МПК F15D 1/00, F15B 19/00, G01M 9/00.

3. Патент РФ №2115905, МПК G01M 9/00.

4. Авторское свидетельство СССР №1156462, G01M 9/00, 15.01.1985 г. - прототип.

5. Шумский В.В. Комбинированный нагрев рабочего тела в газодинамических высокоэнтальпийных установках. Сибирский физико-технический журнал. 1993. Вып.2.

1. Импульсная аэродинамическая труба, содержащая форкамеру с электродами, отделенную от газодинамического тракта трубы диафрагмой, и поршень, образующий дифференциальный мультипликатор, надпоршневое пространство которого соединено с источником толкающего газа, а подпоршневое заполнено демпфирующей жидкостью и соединено с дренированной емкостью, отличающаяся тем, что труба снабжена компенсатором 3 динамической составляющей мультипликатора 5, быстродействующим клапаном 16 запуска системы стабилизации, контактирующим через поршень 4 мультипликатора 5 с полостью Б, форкамеры 19, причем корпус мультипликатора 5 выполнен с возможностью разъема, и при этом его надпоршневое пространство связано с ресивером толкающего газа 1 через быстродействующий клапан 16 запуска системы стабилизации, а подпоршневое пространство через гидравлический канал с регулируемой длиной 11 с подпоршневым пространством компенсатора 3 динамической составляющей мультипликатора, форкамера 19 снабжена стыковочным узлом 25 и обратным клапаном 23 для подключения соответственно импульсного высокоэнтальпийного адиабатического генератора 26 и блока подачи смеси реагирующих газов 24 и содержит устройство принудительного вскрытия 40 диафрагмы 39, размещенное на выходе из форкамеры.

2. Импульсная аэродинамическая труба по п.1, отличающаяся тем, что компенсатор 3 динамической составляющей мультипликатора выполнен в виде коаксиального поршня, надпоршневая часть которого связана с дренированной емкостью 8 для слива жидкости при торможении, а подпоршневое пространство через гидравлический канал с регулируемой длиной 11 с подпоршневым пространством дифференциального мультипликатора 5.

3. Импульсная аэродинамическая труба по п.1, отличающаяся тем, что быстродействующий клапан 16 запуска системы стабилизации содержит цилиндр 34 с поршнем 33 и заглушкой 35, установленный по оси корпуса клапана на пилонах и образующий кольцевой канал Д с корпусом клапана 16, при этом кольцевой канал Д связывает ресивер через сквозной цилиндрический канал 7 с надпоршневым пространством дифференциального мультипликатора 5, а в цилиндре 34 между заглушкой 35 и поршнем 33 образована полость Г, к которой подсоединена пневмотрасса 36 с манометром, вентилем и электромагнитным клапаном.

4. Импульсная аэродинамическая труба по п.1, отличающаяся тем, что поршень мультипликатора 4 содержит систему обратной связи, выполненную в виде канала высокого давления 29, один конец корпуса которого неподвижно закреплен на торце малой ступени поршня 27 и сообщается с полостью Б форкамеры 19, а второй конец корпуса канала подвижно входит в пневмоцилиндр высокого давления 30, где расположен поршень 31 со штоком 32, который через канал В во фланце 17 корпуса мультипликатора 5 взаимодействует с поршнем 33 быстродействующего клапана 16 запуска системы стабилизации.

5. Импульсная аэродинамическая труба по п.1, отличающаяся тем, что устройство управляемого вскрытия 40 диафрагмы 39 содержит корпус с поршнями 41, 42, расположенными по его торцам с жидкостью между ними, при этом поршень 41, обращенный к диафрагме 39, оснащен ножом 43 и приводится в движение вторым поршнем 42, на который воздействует подрывное устройство 44, управляемое с пульта.



 

Похожие патенты:

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в диапазоне чисел Маха 4-20 в лабораторных условиях.

Изобретение относится к экспериментальной аэродинамике, в частности к определению характеристик штопора геометрически и динамически подобной свободно летающей модели летательного аппарата (ЛА) в воздушном потоке вертикальной аэродинамической трубы.

Изобретение относится к экспериментальной аэрогазодинамике, в частности к средствам для установки и перемещения моделей различных летательных аппаратов в рабочих частях аэродинамических труб с высокими значениями скоростных напоров.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. .

Изобретение относится к тренажерам и может быть использовано в качестве тренажера для подготовки парашютистов и развлекательных целей. .

Изобретение относится к транспортному машиностроению, в частности к авиадвигателестроению, и может быть использовано для наземных испытаний и исследования характеристик пульсирующего детонационного двигателя.

Изобретение относится к области аэродинамики и может быть использовано для аэродинамических исследований, подготовки спортсменов-парашютистов и других целей. .

Изобретение относится к аэродинамическим трубам и может быть использовано для проведения различных испытаний моделей летательных аппаратов, моделей несущих и рулевых винтов; парашютных систем и тренировки парашютистов в условиях, соответствующих условиям свободного падения в атмосфере.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвуковых потоков газа для аэродинамических исследований.

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам (АДТ) криогенного типа

Изобретение относится к области приборостроения и может быть широко использовано для решения разных задач экспериментальной аэродинамики, в частности для экспериментальных диагностических измерений параметров газового потока

Изобретение относится к области промышленной аэродинамики, в частности к гиперзвуковым аэродинамическим трубам (АДТ)

Симулятор свободного падения с замкнутой циркуляцией воздуха включает в себя камеру парения, в которой люди могут парить вследствие направленного вертикально вверх воздушного потока, с нижним отверстием на нижнем конце и верхним отверстием на верхнем конце, замкнутый воздухопровод с нагнетателем, который соединяет нижнее отверстие и верхнее отверстие камеры парения, отверстие впуска воздуха и отверстие выпуска воздуха для обмена воздуха внутри воздухопровода, отклоняющие устройства, отклоняющие пластины, которые изменяют направление воздушного потока внутри воздухопровода в угловых зонах и в зонах малого радиуса изгиба. Отверстие выпуска воздуха расположено внутри отклоняющего устройства. Вентиляционное устройство включает аэродинамическую трубу и отклоняющее устройство. Группа изобретений направлена на повышение эффективности регулирования температуры. 4 н. и 22 з.п. ф-лы, 8 ил.

Группа изобретений относится к гиперзвуковым аэродинамическим трубам (АДТ). Способ включает генерацию газа высокого давления из жидкого газа путем его газификации, регулирование давления и нагрев газа, охлаждение стенок сопла, рабочей части и диффузора, охлаждение рабочего газа в газоохладителе, создание разрежения в вакуумной камере, откачку газа из вакуумной камеры производят с помощью ККН, вымораживая рабочий газ на криопанелях в твердую фазу. При превышении предельной толщины слоя конденсата производят регенерацию криопанелей, напуская осушенный атмосферный воздух в изолированную полость ККН, полученный в результате регенерации сжиженный газ откачивают для хранения в резервуаре и газифицируют с целью поддержания требуемого давления в резервуаре газа высокого давления за счет энергии осушенного атмосферного воздуха. Для охлаждения рабочего газа в газоохладителе используют сжиженный газ, а полученный газ высокой температуры и давления направляют в резервуар газа высокого давления и (или) используют в газификаторе. В устройстве для откачки вакуумной камеры используются ККН, в которых газ не выбрасывается из вакуумируемой полости, а конденсируется в твердую фазу на предварительно охлажденных до Т=10÷25 K криопанелях. Для улучшения характеристик существующих ККН предлагается использовать импульсный режим их работы, а криопанели выполнять из пористого металла с открытой системой пор. Технический результат заключается в увеличении расхода откачиваемого газа, снижении энергозатрат на получение газа высокого давления на газификацию жидкого газа, нагреве и охлаждении рабочего газа, увеличении времени работы АДТ, уменьшении ее габаритов. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к экспериментальной аэродинамике, в частности к аэродинамическим установкам (трубам), и может быть использовано для испытаний моделей лопастей воздушных винтов. Устройство содержит входной тракт с задвижкой и дросселем для ввода сжатого воздуха, форкамеру, пульсатор, сопло, рабочую часть, устройство изменения углового положения модели профиля сечения лопасти винта и проведения весовых измерений, выхлопной тракт, рабочую камеру. В форкамере установлены два дросселя, один из которых выполняет роль пульсатора, а другой предназначен для регулирования стационарной составляющей расхода воздуха. Оба дросселя изготовлены в виде двух расположенных соосно перфорированных цилиндров, причем внешние цилиндры неподвижны, внутренний цилиндр пульсатора выполнен с возможностью совершать вращательные и возвратно-поступательные перемещения, а внутренний цилиндр дросселя регулирования стационарной составляющей расхода воздуха выполнен с возможностью совершать только возвратно-поступательные перемещения вдоль оси. Стенки рабочей части аэродинамической трубы выполнены перфорированными. Устройство изменения углового положения модели выполнено в виде отсека рабочей части аэродинамической трубы, на боковых стенках отсека которого расположены тензовесы и устройство изменения углового положения, содержащее механизм синхронизации углового положения модели с пульсациями скорости потока в рабочей части. Технический результат заключается в повышении качества моделирования натурного обтекания профиля сечения лопасти воздушного винта. 3 ил.

Изобретение относится к области экспериментальной аэродинамики, в частности к низкоскоростным аэродинамическим трубам, и может быть использовано для получения воздушных потоков. Устройство содержит вентиляторную установку, замкнутый канал переменного поперечного сечения, прямой канал, форкамеру, коллектор (сопло), рабочий участок с зоной для модельных испытаний, обратный канал, направляющие лопатки, установленные в углах поворота замкнутого канала, детурбулизирующую сетку и хонейкомб. При этом угол поворота, расположенный перед коллектором, составляет более 90°. Технический результат заключается в возможности получения прямолинейной эпюры скорости потока на выходе из коллектора (сопла) при ограниченной длине форкамеры. 1 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при исследовании характеристик летательных аппаратов. В способе подготовки газа для исследований в гиперзвуковой аэродинамической трубе, содержащем операцию разогрева требуемого количества газа до температуры торможения Т0 и операцию его пропускания с требуемыми давлением торможения Р0 и температурой торможения Т0 через аэродинамическое сопло, параллельно разогревают две порции газа до разных среднемассовых температур в двух нагревателях газа. В первом - до максимальной температуры T1, которую допускает конструкция нагревателя газа и которая превышает температуру торможения Т0 (Т1>Т0), во втором - до температуры Т2, меньшей температуры торможения Т0 (Т2<Т0). Затем смешивают порции газа за нагревателями газа и пропускают через нивелирующий нагреватель газа и направляют в аэродинамическое сопло аэродинамической трубы. Также предложено устройство для подготовки газа для исследований в гиперзвуковой аэродинамической трубе, которое содержит источники рабочего газа, основной, дополнительный и нивелирующий нагреватели газа, камеру смешивания, систему регулирования расхода газа через нагреватели газа, аэродинамическое сопло, рабочую часть, систему выхлопа. Технический результат - обеспечение возможности увеличения расхода и тепловой мощности потока рабочего газа через гиперзвуковую аэродинамическую трубу и расширение области режимов эксплуатации. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к аэродинамическим трубам замкнутого типа и может быть использовано для проведения различных испытаний моделей летательных аппаратов, наземного транспорта, зданий, сооружений, мостов. Устройство содержит форкамеру, коллектор, открытую рабочую часть, диффузор длиной L со сквозными демпфирующими отверстиями суммарной площадью от 0,4 до 0,5 площади S выходного сечения коллектора с расположением рядов отверстий на расстоянии от 0,6-0,9 диаметра D коллектора до L/3 длины диффузора от его входного сечения, кольцевой раструб над диффузором, поворотные секции с поворотными лопатками, возвратный канал, лопастной вентилятор, размещенный за диффузором. При этом в диффузор встроен механизм затвора демпфирующих отверстий. Технический результат заключается в возможности упрощения управления совокупностью пульсирующих параметров потока в аэродинамической трубе. 2 з.п. ф-лы, 10 ил.

Изобретение относится к аэродинамическим трубам и может быть использовано для проведения различных испытаний моделей летательных аппаратов, наземного транспорта, зданий, сооружений, мостов. Аэродинамическая труба содержит форкамеру, коллектор, демпфирующие пластины на выходе коллектора, открытую рабочую часть, диффузор со сквозными демпфирующими отверстиями с расположением рядов отверстий на расстоянии от входного сечения диффузора, кольцевой раструб над диффузором, поворотные секции с поворотными лопатками, один возвратный канал, лопастный вентилятор, размещенный за диффузором. При этом диффузор имеет дополнительные сквозные демпфирующие отверстия, расположенные по отношению к уже имеющимся отверстиям на некотором расстоянии, а также отверстия, расположенные с зазором между лопастным вентилятором и диффузором и по отношению к имеющимся на расстоянии. Технический результат заключается в снижении пульсаций потока в инфразвуковом диапазоне, устранении вибраций трубы и здания, устранении вредного воздействия на здоровье обслуживающего персонала. 2 з.п. ф-лы, 13 ил.
Наверх