Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам на основе цирконата-титаната свинца и может быть использовано в высоковольтных актюаторах лазерных адаптивных систем, компенсаторов вибрации оборудования, приборов точного позиционирования объектов (микролитография, туннельные растровые микроскопы), а также в топливно-распределительных системах бензиновых и дизельных двигателей. Пьезоэлектрический керамический материал на основе цирконата-титаната свинца содержит оксиды свинца, титана, циркония, ниобия, бария, стронция, магния, цинка при следующем соотношении компонентов, мас.%: РbO 60,33-67,02, TiO2 10,22-10,48, ZrO2 15,75-17,43, Nb2O5 4,62-4,82, BaO 0,35-2,23, SrO 0,64-4,03, MgO 0,51-0,54, ZnO 0,38-0,39. Материал изготавливают по обычной керамической технологии путем двукратных обжигов смесей с промежуточным помолом синтезированного продукта. Технический результат изобретения - достижение высоких значений относительной диэлектрической проницаемости поляризованных образцов, обратного пьезомодуля, коэффициента электромеханической связи планарной моды колебаний, температуры Кюри. 2 табл.

 

Изобретение относится к пьезоэлектрическим керамическим материалам на основе цирконата-титаната свинца и может быть использовано в высоковольтных актюаторах лазерных адаптивных систем, компенсаторов вибрации оборудования, приборов точного позицинирования объектов (микролитография, туннельные растровые микроскопы).

Известен пьезоэлектрический керамический материал на основе цирконата-титаната свинца, включающий PbO, ZrO2, TiO2, Nb2О5, ZnO, MgO. Материал имеет относительную диэлектрическую проницаемость поляризованных образцов ε33T0=1500÷2500, коэффициент электромеханической связи планарной моды колебаний Кр=0,58÷0,60, температуру Кюри Тк=(290÷350)°С, пьезомодуль d33=470 пКл/Н (1. Фесенко Е.Г., Данцигер А.Я., Разумовская О.Н., Филипьев B.C., Девликанова Р.У., Куприянов М.Ф., Гринева Л.Д., Рогач Т.В., Житомирский Г.А., Фельдман Н.Б., Смажевская Е.Г. Пьезокерамический материал. // Авторское свидетельство СССР №457320 от 20.09.1974 по заявке №1498579, приоритет от 22.12.1970, по МПК СО4 В 35/00. 2. Данцигер А.Я., Резниченко Л.А. и др. Высокоэффективные пьезокерамические материалы. Группа 4. Материалы со средней диэлектрической проницаемостью. Табл.4. Материал ПКР-88. Справочник. - Ростов-на-Дону: АО "Книга". 1994. - 30 с). Для указанных применений материал имеет недостаточно высокие значения ε33T0 и Кр. Кроме того, для указанных применений материал должен обладать высоким значением обратного пьезомодуля (>600 пм/В), так как принцип действия актюаторов построен на использовании обратного пьезоэффекта, то есть на деформации пьезоэлемента под действием электрического поля. В сегнетоэлектриках (d33 - прямой динамический пьезомодуль) (Резниченко Л.А. Автореферат дисс.… д.ф.-м. н. - Ростов-на-Дону. 2002. - 42 с.), то есть в данном материале не достаточно высок и .

Известен пьезоэлектрический керамический материал на основе цирконата-титаната свинца, включающий PbO, ZrO2, TiO2, Nb2O5, SrO (промышленно выпускаемый в России материал ЦТС-19). Материал имеет ε33T0=1470÷1760, Кр=0,42÷0,467, Тк>290°С, пьезомодули |d31|=116 пКл/Н и d33=298 пКл/Н (1. ОСТ 11 0444-87. Материалы пьезокерамические. Технические условия. Группа Э10. Введены 01.01.88. - М. 1987. - 141 С. Табл.15 на стр.116-117 с примечаниями на стр.127. 2. Глозман И.А. Пьезокерамика. - М.: "Энергия". 1967 - 272 С.3. Ланин В.А. Старение пьезокерамики системы ЦТС под действием электромеханических и механических напряжений. Автореферат дисс.… к.т.н. - Томск. 2006. - 21 C. Здесь одновременно приведены марка материала ЦТС-19 и его химическая формула с PbO, ZrO2, TiO2, Nb2O5, SrO). Для указанных применений материал имеет недостаточно высокие значения ε33T0, Kp, (поскольку ).

Известен пьезокерамический материал на основе цирконата-титаната свинца, включающий PbO, TiO2, ZrO2, Nb2O5, SrO и добавки: СаО, ZnO, Ta2O5, WO3, МоО3, Fe2O3, Sb2O3, Со3O4, NiO, Сr2O3. Материал имеет ε33T0=1500÷2500, Кр=0,50÷0,71, Тк=305°C (Nanao, Furukawa, Sakamoto, Tsukada. Piezoelectric ceramic and piezoelectric device. // European Patent Application EP 1580180 A1. 2005). Для указанных применений материал имеет недостаточно высокие значения ε33T0 и Кр.

Наиболее близкими к заявляемому материалу по технической сущности и достигаемому результату являются пьезоэлектрические керамические материалы на основе цирконата-титаната свинца, включающие в мас.%:

1. PbO=(61,48÷69,00), TiO2=(5,84÷13,11), ZrO2=(12,94÷23,53), Nb2O5=(1,31÷4,36), SrO=(0,00÷3,40) и добавки MgO=(0,03÷0,50), ZnO=(0,40÷1,33) и другие добавки (СаО, Та2O5, WO3, Sb2O3, Со3O4, NiO, Сr2O3, Ag2O, Gа2O3, Y2O3, Lа2O3, СеO2, Рr2O3, Nd2O3, Sm2О3, Еu2O3, Gd2O3, Тb2O3, Ву2O3, Но2O3, Еr2O3, Тm2O3, Yb2О3, Lu2О3) или

2. PbO=(60,52÷69,00), TiO2=(5,84÷12,60), ZrO2=(12,94÷23,42), Nb2O5=(1,31÷4,19), BaO=(0,00÷4,83) и добавки MgO=(0,03÷0,50), ZnO=(0,40÷1,28) и другие добавки (СаО, ZnO, Та2O5, WO3, Sb2O3, Со3O4, NiO, Сr2O3, Ag2O, Gа2O3, Y2O3, La2O3, СеО2 Рr2O3, Nd2O3, Sm2O3, Еu2O3, Gd2O3, Тb2O3, Dy2О3, Но2О3, Еr2О3, Тm2О3, Yb2О3, Lu2O3).

Материалы имеют ε33T0=1500÷1800, Кр=0,50÷0,74,

(К.Iezumi, J.Yamazaki, T.Tsukada, N.Sakamoto, Т.Sogabe, M.Nanao. Piezoelectric ceramic composition and liminated piezoelectric element. // European Patent Application EP 1772442 Al. 2006. Прототип.) Для указанных применений материалы имеют недостаточно высокие значения ε33T0 и .

Задачей изобретения является повышение ε33T0, и получение значений ε33T0=2700÷4300, (при Е=1 кВ/см) и (1100÷3000) пм/В (при Е=(5÷7) кВ/см), при сохранении высоких Кр=0,60÷0,70. Указанные результаты достигаются тем, что пьезоэлектрический керамический материал на основе цирконата-титаната свинца, включающий PbO, TiO2, ZrO2, Nb2O5, ВаО (или SrO) и добавки MgO, ZnO и другие, одновременно содержит ВаО и SrO и добавки MgO и ZnO при следующем соотношении компонентов, мас.%:

РbО=60,33÷67,02 ВаO=0,35÷2,23
TiO2=10,22÷10,48 SrO=0,64÷4,03
ZrO2=15,75÷17,43 MgO=0,51÷0,54
Nb2O5=4,62÷4,82 ZnO=0,38÷0,39

В качестве исходных реагентов использовались оксиды и карбонаты следующих квалификаций: PbO, ZrO2 и ТiO2- "ч", ВаСО3, SrСО3, ZnO, MgO - "ч.д.а.", Nb2O5 -"нбо-пт".

1. Пример изготовления пьезоэлектрического керамического материала

Материал изготавливается по обычной керамической технологии следующим образом. Синтез осуществляется путем двухкратных обжигов смесей, мас.%: PbO=67,02; TiO2=10,48, ZrO2=15,74, Nb2O5=4,62, BaO=0,44, SrO=0,81, MgO=0,51, ZnO=0,38 с промежуточным помолом синтезированного продукта. Температуры обжигов Тсинт.1=1120K, Тсинт.2=1170К, длительности изотермических выдержек τ12=6 ч. Спекание образцов в виде столбиков ⌀12 мм, высотой 15÷18 мм осуществляется при Тсп.=1490К, длительность изотермической выдержки τ=3 ч. Металлизация (нанесение электродов) производится путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг.=1070К в течение 0,5 ч. Образцы поляризуют в полиэтиленсилоксановой жидкости при температуре 410 К в течение 40 мин в постоянном электрическом поле напряженностью 3 кВ/см.

2. Пример изготовления пьезоэлектрического керамического материала

Материал изготавливается по обычной керамической технологии следующим образом. Синтез осуществляется путем двухкратных обжигов смесей, мас.%: РbО=64,64; ТiO2=10,35, ZrO2=16,40, Nb2O5=4,71, ВаO=1,06, SrO=1,93, MgO=0,52, ZnO=0,39 с промежуточным помолом синтезированного продукта. Температуры обжигов Tсинт.1=1150K, Тсинт.2=1220К, длительности изотермических выдержек τ12=6 ч. Спекание образцов в виде столбиков ⌀12 мм, высотой (15÷18) мм осуществляется при Тсп.=1510К, длительность изотермической выдержки τ=3 ч. Металлизация (нанесение электродов) производится путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг.=1070К в течение 0,5 ч. Образцы поляризуют в полиэтиленсилоксановой жидкости при температуре 410 К в течение 40 мин в постоянном электрическом поле напряженностью 3 кВ/см.

3. Пример изготовления пьезоэлектрического керамического материала

Материал изготавливается по обычной керамической технологии следующим образом. Синтез осуществляется путем двухкратных обжигов смесей, мас.%: PbO=61,87; TiO2=10,26, ZrO2=17,08, Nb2O5=4,78, BaO=1,77, SrO=3,32, MgO=0,53, ZnO=0,39 с промежуточным помолом синтезированного продукта. Температуры обжигов Тсинт.1=1140К, Тсинт.2=1190К, длительности изотермических выдержек t12=6 ч. Спекание образцов в виде столбиков ⌀12 мм, высотой 15÷18 мм осуществляется при Тсп.=1500К, длительность изотермической выдержки τ=3 ч. Металлизация (нанесение электродов) производится путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг.=1080K в течение 0,5 ч. Образцы поляризуют в полиэтиленсилоксановой жидкости при температуре 410 К в течение 40 мин в постоянном электрическом поле напряженностью 3 кВ/см.

Электрофизические характеристики определяли в соответствии с ОСТ 11.0444-87: измерялись относительные диэлектрические проницаемости поляризованных (ε33Т0) и неполяризованных (ε/ε0) образцов, прямые пьезомодули- (|d31|) и (d33), коэффициент электромеханической связи планарной моды колебаний (Кр), механическая добротность (QM), модуль Юнга (YE11), скорость звука (VE1), температура сегнетоэлектрического фазового перехода (температура Кюри) (Тк), тангенс угла диэлектрических потерь (tgδ), пьезоэлектрический коэффициент (пьезочувствительность) (g31). Обратный статический пьезомодуль измерен на установке, включающей прецизионную микрометрическую стойку для закрепления пьезоэлемента измерительного датчика, стабилизированный источник электрического напряжения с плавной и дискретной регулировкой и цифровой индикацией выходного напряжения (диапазон напряжений 0-1500 В), измерительный индуктивный преобразователь перемещения с цифровой индикацией показаний и возможностью их вывода на самописец и компьютер.

На фиг.1, где изображена табл.1, приведены основные характеристики материала в зависимости от состава, а на фиг.2, где изображена табл.2, приведены основные электрофизические характеристики для оптимальных составов предлагаемого материала. Результаты испытания пьезоэлектрических керамических образцов приведены в акте.

Полученные экспериментальные данные (фиг.1, табл.1, примеры 3-8) свидетельствуют о том, что пьезоэлектрический керамический материал предлагаемого состава обладает оптимальными, с точки зрения решаемой технической задачи, характеристиками в указанном интервале величин компонентов.

Данные, приведенные на фиг.1, 2 (табл.1, 2), подтверждают преимущества предлагаемого пьезоэлектрического керамического материала по сравнению с материалом-прототипом, а именно повышение ε33T0 и до значений ε33T0=2700÷4300, (при Е=1 кВ/см) и =(1100÷3000) пм/В (при Е=(5÷7) кВ/см), при сохранении высоких Кр=0,60÷0,70.

Эффект повышения указанных параметров достигается по существу одновременным введением ВаО и SrO, а также большим количеством (по сравнению с прототипом) вводимых Nb2O5, MgO и меньшим - ZnO.

Предлагаемый пьезоэлектрический керамический материал получают по обычной керамической технологии, без использования шликерного литья и введения в качестве добавок большого количества различных, в том числе редкоземельных элементов (см. прототип), что значительно упрощает и удешевляет технологический процесс.

Указанные параметры нового материала позволяют использовать его в более высоковольтных режимах из-за реализации при высоких полях значений , равных (1100÷3000) пм/В. Это открывает возможность применений такого материала в приборах управления (электрическим полем) лазерным лучом, а также в качестве приводов деформируемых лазерных резонаторов. Высокие ТK материала позволяют его применять и в топливно-распределительных системах бензиновых и дизельных двигателей.

Из вышесказанного следует, что технический результат изобретения достигается новой совокупностью существенных признаков, как вновь введенных, так и известных, следовательно, заявляемый пьезоэлектрический керамический материал соответствует критерию патентоспособности «изобретательский уровень».

Предлагаемый пьезоэлектрический керамический материал обеспечивает технический результат, не вызывает затруднений при изготовлении, предполагает использование основных (доступных и дешевых) материалов (реагентов) и стандартного оборудования, что свидетельствует о соответствии заявляемого технического решения критерию патентоспособности «промышленная применимость».

Пьезоэлектрический керамический материал на основе цирконата-титаната свинца, включающий РbО, ТiO2, ZrO2, Nb2O5, ВаО (или SrO) и добавки MgO и ZnO, отличающийся тем, что одновременно содержит ВаО и SrO, большее количество Nb2O5 и MgO, меньшее количество ZnO при следующем соотношении компонентов, мас.%:

РbО 60,33-67,02
ТiO2 10,22-10,48
ZrO2 15,75-17,43
Nb2O5 4,62-4,82
ВаО 0,35-2,23
SrO 0,64-4,03
MgO 0,51-0,54
ZnO 0,38-0,39


 

Похожие патенты:
Изобретение относится к получению материалов для производства сегнетоэлектрической керамики, используемой в электронной технике. .

Изобретение относится к области сегнетожестких пьезокерамических материалов, устойчивых к электрическим и механическим воздействиям, предназначенных для ультразвуковых устройств, в том числе многослойных и работающих при сильных электрических и механических воздействиях.
Изобретение относится к пиро- и пьезоэлектрическим керамическим материалам на основе комплексных оксидов и может быть использовано для создания рабочих элементов датчиков пироэлектрических приемников теплового излучения в системах пожарной и охранной сигнализации и в пьезоэлектрических изделиях, используемых в качестве преобразователей в ультразвуковых дефектоскопах и толщиномерах.

Изобретение относится к материалам пьезотехники и может быть использовано при изготовлении пьезоэлектрических преобразователей ультразвуковых дефектоскопов , толщинометров, приборов медицинской диагностики.

Изобретение относится к материалам пьезотехники и может быть использовано в пьезоэлектрических преобразователях ультразвуковых приборов неразрушающего контроля (дефектоскопах, толщинометрах).

Изобретение относится к пьезо-, сегнето- и пироэлектрическим материалам и может быть использовано для создания рабочих элементов в устройствах пьезотехники, оптоэлектроники, в различных видах устройств и приборов, в качестве термодатчиков и т.д.

Изобретение относится к пьезоэлектрическим керамическим материалам на основе соединений свинца, титана, ниобия, магния, германия, циркония и может быть использовано в электромеханических преобразователях, стабильно работающих в диапазоне температур от 25°C до 240°C, одним из основных критериев работы которых является низкий предел допускаемой дополнительной погрешности измерения, вызванной изменением температуры окружающей среды в указанном диапазоне. Пьезоэлектрический керамический материал на основе титаната свинца содержит оксиды свинца, титана, ниобия, магния, германия, циркония при следующем соотношении компонентов в мас.%: РbО 69,13-69,27; Nb2O5 7,82-8,07; TiO2 9,71-10,21; GеO2 0,65; MgO 1,18-1,22; ZrO2 10,87-11,22. Технический результат изобретения: введение в материал оксида германия приводит к формированию более совершенной кристаллической структуры, минимизирует флуктуации состава, плотности и пр. и, как следствие, стабилизирует пьезо- и диэлектрические свойства материала. 2 табл., 1 ил.

Изобретение относится к композиционным керамическим пьезоэлектрическим материалам на основе фаз кислородно-октаэдрического типа и может быть использовано для изготовления гидроакустических устройств, а также приборов СВЧ и УЗ диапазонов, приборов точного позиционирования объектов (литография, туннельные растровые микроскопы) и т.д. Техническим результатом изобретения является повышение значений εT 33/ε, пьезомодулей и приведенных параметров, определяющих эффективность пьезоматериалов при сохранении ими высоких значений Кp. Композиционный пьезокерамический материал включает: фазу А, полученную из PbO, ZrO2 и TiO2 при следующем соотношении компонентов, в мольных долях (PbO : ZrO2 : TiO2) : [1:(0,33-0,39):(0,61-0,67)]; фазу В, полученную из PbO, ZnO, NiO·nH2O и Nb2O5 при следующем соотношении компонентов, в мольных долях (PbO : ZnO : NiO·nH2O : Nb2O5): [1:(0,08-0,12):(0,22-0,25):0,33], где n=1-3; фазу С, полученную из PbO, Fe2O3·mH2O и Nb2О5 при следующем соотношении компонентов, в мольных долях (PbO : Fe2O3·mH2O : Nb2O5) : [1:0,25:0,25], где n=1-3. Содержание фаз A, B и C в системе в мольных долях составляет [(1-k/2) (0,54-0,6) А]+[(1-k/2)(0,4-0,46) В]+[kC], где k=0,01-0,10. 1 з.п. ф-лы, 3 пр., 4 табл., 5 ил.

Изобретение относится к пьезоэлектрическим керамическим материалам на основе титаната свинца и может быть использовано в низкочастотных приемных устройствах - гидрофонах, микрофонах, сейсмоприемниках, а также в приборах медицинской диагностики, Работающих на нагрузку с низкоомным входным сопротивлением

Изобретение относится к пьезокерамическим материалам и может быть использовано при создании пьезопреобразователей для приборов высокотемпературной виброметрии, УЗ-аппаратуры для дефектоскопии и дефектометрии, УЗ-медицинской диагностической аппаратуры, геофизической УЗ-аппаратуры и высокочастотной гидроакустической аппаратуры (звуковидение)
Изобретение относится к керамическому материалу, содержащему цирконат-титанат свинца и дополнительно включающему Nd и Ni, и может быть использовано для изготовления пьезоэлектрических возбудителей

Изобретение относится к пьезоэлектрическим керамическим материалам и может быть использовано в низкочастотных приемных устройствах, гидрофонах, сонарах, работающих в гидростатическом режиме, акустических приемниках, датчиках давления. Состав материала, мас.%: PbO 69,39-69,68, Nb2O5 17,98-19,28, TiO2 7,46-8,73, MgO 1,76-1,90, NiO 1,08-1,14 и ZnO 0,77-0,83, что соответствует фазовому составу: aPbTiO3+bPbNb2/3Mg1/3O3+cPbNb2/3Ni1/3O3+dPbNb2/3Zn1/3O3, где а=30.00÷35.00 (в мол.%), b=41.95÷45.41 (в мол.%), c=13.93÷14.77 (в мол.%), d=9.12÷9.82 (в мол.%), a+b+c+d=100%. Гетеровалентное модифицирование материала на основе PbO (Pb2+), Nb2O5 (Nb5+), TiO2 (Ti4+) и ZnO (Zn2+) оксидами двухвалентных металлов MgO (Mg2+) и NiO (Ni2+) приводит к образованию кислородных вакансий в процессе спекания и к формированию сегнетомягкой структуры, повышению мобильности доменных стенок и, как следствие, повышению диэлектрической проницаемости ε 33   T ε 0 , пьезомодуля d33, гидростатического пьезомодуля dh и гидростатической добротности dh·gh и снижению механической добротности Qm за счет усиления внутреннего трения при большой подвижности доменных стенок. 2 табл.

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении относительной диэлектрической проницаемости и температуры спекания материала. Пьезоэлектрический керамический материал содержит следующие компоненты, мас.%: PbO 64,36-64,43; Nb2O5 22,72-23,04; TiO2 3,43-3,80; BaO 2,32-2,33; MgO 0,19-0,22; NiO 0,35-0,40; ZnO 6,17-6,18. 2 пр., 3 табл.

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении механической добротности, относительной диэлектрической проницаемости поляризованных образцов, в повышении пьезомодуля, пьезочувствительности, удельной чувствительности, коэффициента электромеханической связи планарной моды колебаний. Пьезоэлектрический керамический материал содержит следующие элементы, мас.%: Na2O 8,77-8,84; K2O 11,36-11,44; Li2O 0,32-0,33; Ta2O5 11,58-11,67; Sb2O5 3,53-3,56; Nb2O5 62,71-63,17; NiO 0,99-1,73. 3 табл., 3 пр.

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в повышении коэффициента электромеханической связи планарной моды колебаний, снижении относительной диэлектрической проницаемости. Пьезоэлектрический керамический материал содержит следующие компоненты, мас.%: Na2O 8,61-8,70; К2O 11,15-11,26; Li2O 0,49-0,50; Та2O5 11,37-11,49; Nb2O3 61,59-62,19; Bi2O3 0,37-1,10; Fe2O3 0,13-0,38; Sb2O5 5,31-5,37. 3 пр., 3 табл.
Наверх